header
Dr. Shawn M. Christensen - Publications

 

SEE LAB WEBPAGE FOR PDF FILES OF PAPERS

Thompson B.K., Christensen S.M. (2011) Independently derived targeting of 28S rDNA by A- and D-clade R2 retrotransposons: plasticity of integration mechanism. Mobile Genetic Elements. 1:29-37.

Tracy, C., Rio, J., Motiwale, M., Christensen, S.M. and Betran, E. (2010) Convergently recruited nuclear transport retrogenes are male biased in expression and evolving under positive selection in Drosophila. Genetics 184, 1067-1076.

Noor M.R., Goyal S., Christensen S.M., and Iqbal S.M. (2009). Electrical detection of single-base DNA mutation using functionalized nanoparticles. Applied Physics Letters. 95, 073003.

Ramachandran P.P., Christensen S.M., and Iqbal S.M. (2009). Electronic detection of selective proteins using non antibody-based CMOS chip. Proceedings of IEEE-NIH Life Science Systems and Applications Workshop 2009. LiSSA'09, 1-4.

Kierzek E., Christensen S.M., Eickbush T.H., Kierzek R., Turner D.H., and Moss W.N. (2009). Secondary structures for 5' regions of R2 retrotransposon RNAs reveal a novel conserved pseudoknot and regions that evolve under different constraints. J Mol Biol. 390, 428-442.

Kierzek E., Kierzek R., Moss W.N., Christensen S.M., Eickbush T.H., and Turner D.H. (2008). Isoenergetic penta- and hexanucleotide microarray probing and chemical mapping provide a secondary structure model for an RNA element orchestrating R2 retrotransposon protein function. Res. 36, 1770-1782.

Christensen, S.M., Ye, J., and Eichbush, T.H. (2006) RNA from the 5' end of the R2 retrotransposon controls R2 protein binding to and cleavage of its DNA target site. PNAS 2006 103: 17602-17607

Christensen, S.M., Bibillo, A., and Eickbush, T.H. (2005) Role of the Bombyx mori R2 element amino-terminal domain in the target primed reverse transcription reaction. Nucleic Acids Res. 33(20):6461-8

Christensen, S.M. and Eickbush, T.H. (2005). R2 target primed reverse transcription: ordered cleavage and polymerization steps by protein subunits asymmetrically bound to the target DNA. Mol Cell Biol. 25(15):6617-28.

Christensen, S. and Eickbush, T.H. (2004). Footprint of the retrotransposon R2Bm protein on its target site before and after cleavage. J Mol Biol. 336(5):1035-45.

Christensen, S., Pont-Kingdon, G., Carroll, D. (2000). Comparative studies of the endonucleases from two related Xenopus laevis retrotransposons, Tx1L and Tx2L: Target site specificity and evolutionary implications. Genetica 110(3):245-56.

Christensen, S., Pont-Kingdon, G., Carroll, D. (2000). Target specificity of the endonuclease from the Xenopus laevis non-long terminal repeat retrotransposon, Tx1L. Mol. Cell Biol. 20(4): 1219-26.

Pont-Kingdon, G., Chi, E., Christensen, S.M., and Carroll, D. (1998). RNA expression from a site-specific non-LTR retrotransposon microinjected into Xenopus oocytes. Genetica. 104(1);67-76.

Pont-Kingdon, G., Chi, E., Christensen, S.M., and Carroll, D. (1997). Ribonucleoprotein formation by the ORF1 protein of the non-LTR retrotransposon Tx1L in Xenopus oocytes. Nucleic Acids Research. Vol 25 No 15:3088-3094.