Two UT Arlington researchers want to bridge the gap between what is known about exploding stars and the remnants left behind thousands of years later. So they're trying something new - using SNSPH, a complex computer code developed at Los Alamos National Laboratory.
On January 8, Carola I. Ellinger, a post-doctoral researcher at UT Arlington, and Sangwook Park, an assistant professor in the College of Science's physics department, were scheduled to present their research on "3D Simulations of Supernovae into the Young Remnant Phase" at the national meeting of the American Astronomical Society in Long Beach, Calif. Their oral presentation focuses on first efforts to use SNSPH, a parallel 3-dimensional radiation hydrodynamics code written in 2005, to create 3D simulations of a core-collapse supernova evolving into remnants.
"There are a lot of numerical simulations for the explosion of the supernova and a lot of simulations of the blast wave expanding into interstellar medium, but there was no useful work connecting the two, even though the physics are connected," Park said. "Now, we are using the most appropriate program we know to do that."
Besides Ellinger and Park, co-authors of the abstract include: Gabriel Rockefeller and Chris Fryer, of the Computer, Computational, and Statistical Sciences division at Los Alamos National Laboratory; and Patrick Young, of the Arizona State University School of Earth and Space Exploration.
Core collapse supernovas make up nearly three-quarters of all supernovas and they are the type of star explosions that create black holes and neutron stars. Scientists study them to learn more about the history and landscape of the universe, including how minerals were distributed and planets formed. Typically, individual researchers focus on either the blast or the remnants.
Though their project is in its initial stages, the researchers hope their new models will help reveal the detailed nature of the two features of a supernova remnant - characteristics that arose in instabilities during the |