A-Z INDEX FIND PEOPLE MAP COS HOME
COS Home
COS Home
Deng receives NASA grant to study space weather effects
     
UT Arlington physicist Yue Deng will receive more than $500,000 from NASA to study how space weather events such as solar flares drive vertical winds to affect electrodynamics in the Earth’s upper atmosphere.

Deng’s work could one day help operators of near-earth satellites, air traffic radar and electricity grids know how to best safeguard their systems from bursts of radiation and energetic particles. The research is funded through NASA’s Living With a Star initiative, which supports physics to further knowledge about the sun, its relationship to the Earth and its effect on life and society.

“Almost all the influence of space weather on our society is affected by dynamics in the upper atmosphere. Neutral wind in the upper atmosphere is very difficult to model and measure but it is still one of the most important parameters to consider,” said Deng, an assistant professor of physics who joined the College of Science in 2009.

Solar winds (plasma) from the Sun carry an interplanetary magnetic field (IMF) and energy that interacts with the Earth’s outer magnetic field, or magnetosphere. During times of greater solar output, like after a coronal mass ejection (CME) or solar flare, spikes of energy can enter the thermosphere/ionosphere, also known as the upper atmosphere. If not properly anticipated, the bursts can disrupt energy delivery systems, communication technology and airline activity.

The new four-year, $534,000 grant builds on a $408,000 NASA grant Deng received in 2013 to further develop the Global Ionosphere-Thermosphere Model or GITM. GITM is a 3-D look at how electrodynamic energy from solar winds influences the Earth’s upper atmosphere.

The system is unique because it is the first to incorporate the non-hydrostatic process in a circulation model for the upper atmosphere. A hydrostatic environment assumes a balance between pressure gradient force and gravitational force, which is naturally disturbed when any energy is input from space environment, Deng said.

The GITM system also is the first model of its kind to incorporate

 

 
Yue Deng
information acoustic wave propagation.

“Dr. Deng’s continued NASA support is a strong endorsement of the valuable role she is playing in pushing past limits in our understanding of the Earth and its atmosphere,” said Pamela Jansma, dean of the UT Arlington College of Science. “She has forged partnerships with other institutions that are strengthening UT Arlington’s reputation and benefiting the scientific community overall.”

Donald Hampton, a research assistant professor at the University of Alaska Fairbanks, and Jonathan Makela, an associate professor of electrical and computer engineering at the University of Illinois, are co-investigators on Deng’s new grant and will contribute observational information. Observations for the new project will come from ground based networks called Fabry-Perot interferometers that are based in Alaska and Brazil, as well as satellites from the U.S.-operated Defense Meteorology Satellite Program, or DMSP, and the Challenging Minisatellite Payload, or CHAMP, a German satellite.

Deng’s work with the GITM model has already been featured in scientific journal articles, including a Journal of Geophysical Research study published with UT Arlington Physics Professor Ramon E. Lopez in 2013. It was called: “Theoretical study: Influence of different energy sources on the cusp neutral density enhancement.” Deng was also the recipient of a 2010 National Science Foundation Early Career Development, or CAREER, award.

Posted February 24, 2014
The University of Texas at Arlington  |  College of Science
Dean’s Office: Room 206, Life Science Building, 501 S. Nedderman Drive
Mailing Address:  P.O. Box 19047 Arlington, TX 76019 Phone: 817-272-3491 Fax: 817-272-3511
Questions or comments? Contact COS Web Developer
©2014 The University of Texas at Arlington. All rights reserved.
About UTA Athletics Continuing Education
Admissions Campus Life Libraries
Academics Research Support UT Arlington