
Optimization of a Large-Scale Water Reservoir Network by

Stochastic Dynamic Programming with Efficient State Space

Discretization

COSMOS Technical Report 04-04

Cristiano Cervellera (corresponding author)
Institute of Intelligent Systems for Automation - ISSIA-CNR National Research Council
of Italy, Via De Marini 6, 16149 Genova, Italy. Email: cervellera@ge.issia.cnr.it

Victoria C. P. Chen
Dept. of Industrial & Manufacturing Systems Engineering - The University of Texas at
Arlington, Campus Box 19017 Arlington, TX 76019-0017. Email: vchen@uta.edu

Aihong Wen
Dept. of Industrial & Manufacturing Systems Engineering - The University of Texas at Ar-
lington, Campus Box 19017 Arlington, TX 76019-0017. Email: axw0932@omega.uta.edu

1

Abstract

A numerical solution to a 30-dimensional water reservoir network optimization problem,
based on stochastic dynamic programming, is presented. In such problems the amount
of water to be released from each reservoir is chosen to minimize a nonlinear cost (or
maximize benefit) function while satisfying proper constraints. Experimental results show
how dimensionality issues, given by the large number of basins and realistic modeling of
the stochastic inflows, can be mitigated by employing neural approximators for the value
functions, and efficient discretizations of the state space, such as orthogonal arrays, Latin
hypercube designs and low-discrepancy sequences.

Keywords

Dynamic programming, Large-scale optimization, Applied probability, Neural networks,
Natural resources

2

1 Introduction

Optimal operation of water reservoir networks has been studied extensively in literature
(e.g., [1, 12, 13, 21, 34]; Yakowitz [37] provides an excellent survey). Reservoir networks
systems can be represented by graphs in which the nodes correspond to water basins and
the links are characterized by interbasin transfers. In typical models, the inputs to the
nodes are water released from upstream reservoirs and stochastic inflows from external
sources (like rivers and rain), while the outputs correspond to the amount of water to be
released during a given time period (e.g., a month).

The dynamics for the single basin can be modeled by a state equation where the
amount of water at the beginning of period t + 1 reflects the flow balance between the
water that enters (upstream releases and stochastic inflows) and the water that is released
during period t. The amount of water to be released during a given time period from each
reservoir is chosen to minimize some possibly nonlinear cost (or maximize benefit) function
related to the releases (e.g., power generation), while satisfying proper constraints, e.g.,
maximum pumpage capacities or target water level in each basin at the beginning of each
period t. Thus, optimal management of the reservoir network can be formulated as an
optimization problem, in which the aim is to determine the quantity of water releases
that minimize a total cost over a given horizon of T time periods (e.g., a year). In the
case of large-scale reservoir networks with several basins, nonlinearities and the presence
of stochastic variables, the corresponding optimization problem becomes very complex.

This is particularly evident when we want to model the stochastic inflows accurately.
In a realistic representation of inflow dynamics, the amount of (random) water flowing into
the basins during a given period t depends on the amounts of past periods. An example
of realistic modeling, widely and successfully employed in the water resources literature
[13, 30], is to consider autoregressive linear models of a given order k. To construct this
model, the inflows of the past k time periods must be included in the state vector, which
consequently can become very large.

Stochastic dynamic programming (SDP) [3, 4, 28] is the most commonly used solution
technique in the reservoir networks management literature [1, 12, 13, 20, 27, 37]. SDP is
based on the definition, at each stage t, of a value function which quantifies the cost from
that stage through the end of the time horizon. In this way, it is possible to transform
the optimization problem into the recursive solution of a sequence of simpler optimization
subproblems. It is well known that an exact solution to the SDP equations can be obtained
only when system dynamics are linear and the cost (benefit) function is quadratic. In
the general case we must seek approximate solutions, which are based on a state space
discretization and an approximation of the value functions over the continuous space.
Although for the deterministic case there exist efficient versions of dynamic programming,
such as Differential DP [19], classical approaches for the stochastic case suffer from the
curse of dimensionality phenomenon, which is an exponential growth of the computational
and memory requirements as the dimension of the state vector increases. This is why
only reservoir networks of limited size are considered in the literature, in the absence
of restrictive hypotheses on the model. For example, in a recent paper [27], the largest
example involved seven state variables. Therefore, for large-scale reservoir networks with
accurate inflow dynamics, a very efficient version of SDP is still needed.

In this work we present approximate solutions to a 30-dimensional problem. The state
space dimension arises from a test network with 10 reservoirs and inflows modeled by an

3

autoregressive system of order 2, where the cost and the constraints are nonlinear. To
the best of the authors’ knowledge, this is the largest dimensional problem ever addressed
in the reservoirs management literature by SDP techniques, at least without introducing
restrictive hypotheses on the cost and/or the model.

For solving such a high-dimensional problem we utilize an approach based on efficient
discretization of the state space and approximation of the value functions over the con-
tinuous state space by means of a flexible feedforward neural network. Other methods
that employ neural networks for reservoir control problems can be found in literature. For
instance, in [31], a 10-dimensional model where the cost function represents energy deficit
in power generation is solved by an algorithm based on a two-phase neural network.

The approach presented here is based on the high-dimensional continuous-state SDP
work of Chen [7, 8, 9]. The most commonly employed discretization in the literature,
consists of a uniform grid of points over the state space, which is not efficient because it is
subject to exponential growth. Referring to the area of statistical design of experiments,
we consider more efficient discretizations. Specifically, orthogonal arrays (OA) [8], OA-
based Latin hypercubes (OA-LH) [33], and number-theoretic methods based on Sobol′

[32] and Niederreiter-Xing [25, 26] low-discrepancy sequences. For what concerns low-
discrepancy sequences in particular, it has been recently proven [6] that their use in the
context of function learning leads to an almost linear sample complexity in the estimation
of the best network inside the chosen family, which is in general one of the main sources of
curse of dimensionality when value functions have to be approximated in SDP problems.

The paper is organized as follows. Section 2 contains a description of the 30-dimensional
test reservoir network model. In Section 3 the method based on SDP is introduced and dis-
cussed. Section 4 is devoted to the actual solution of the test problem, where the relevant
parameters and results are presented. Section 5 contains some concluding remarks.

2 The Model

The water reservoir network we consider consists of 10 basins, each one affected by sto-
chastic inflows and controlled by means of water releases. The configuration of the network
is depicted in Figure 1. The details concerning the model, defined in the following subsec-
tions, reflect typical situations that can be found in the reservoirs management literature.

2.1 Notation

We define

• wi
t ∈ R: amount of water in the i-th reservoir at the beginning of stage t, i =

1, . . . , 10, t = 1, . . . , T ; vector wt ∈ R
10.

• ri
t ∈ R: amount of water released from the i-th reservoir during stage t, i = 1, . . . , 10,

t = 1, . . . , T ; vector rt ∈ R
10.

• ǫi
t ∈ R: stochastic net inflow into the i-th reservoir during stage t, i = 1, . . . , 10,

t = 1, . . . , T ; vector ǫt ∈ R
10.

• zi
t = ǫi

t−1 for t = 2, . . . , T ; zi
t = ẑi otherwise, where ẑi is given; vector zt ∈ R

10.

• yi
t = ǫi

t−2 for t = 3, . . . , T ; yi
t = ŷi otherwise, where ŷi is given; vector yt ∈ R

10.

4

• xt = [wt, zt, yt] ∈ R
30: the 30-dimensional state vector.

• ξi
t ∈ R: independent standard normal distribution random variables; vector ξt ∈ R

10.

• w̃i
t: target water level for reservoir i at the beginning of period t.

• U i: the set of indexes corresponding to the reservoirs which release water into reser-
voir i.

• W i: the maximum capacity of reservoir i.

• Ri: the maximum pumpage capability for reservoir i.

• ht(xt, rt, ǫt): cost function for stage t.

• ft(xt, rt, ǫt): state equation for stage t.

2.2 The stochastic inflows

The random vector ǫt is modeled through an autoregressive system of order 2, affected by
a random correction ξt that follows a standard normal distribution.

ǫi
t = ai

tǫ
i
t−1 + bi

tǫ
i
t−2 + ci

t + dtξ
i
t

The coefficients of the linear combinations (at, bt, ct, dt ∈ R) actually depend on t, so
that it is possible to model proper inflows behaviour for different months. The actual
values of the coefficients used for the model were based on the one-reservoir real model
described in [13] and extended to our 10-reservoir network. In our example, we have chosen
the values of the coefficients to be equal for reservoirs that are supposed to be “close” to
each other (i.e., there are three “sets” of coefficients, corresponding to reservoirs 1-5,
reservoirs 6-9 and reservoir 10, respectively), to model some correlation between inflows
corresponding to similar locations. It is worth noting that more complex inflows dynamics
that model greater correlation (e.g., where the autoregressive coefficients at and bt do not
form diagonal matrices) might be employed without affecting the complexity of the SDP
method.

2.3 The state equation

The amount of water at stage t+1 reflects the flow balance between the water that enters
(upstream releases and stochastic inflows) and the water that is released. In order to
deal with unexpected peaks of stochastic inflows, each reservoir has a floodway, so that
the amount of water never exceeds the maximum value W i. This is done to introduce a
nonlinearity in the state equation of our test problem, and is consistent with actual real
world examples (see, for instance, [14]). Therefore, the state equation for wi

t is

wi
t+1 = min







wi
t +

∑

j∈U i

rj
t − ri

t + ǫi
t , W i







For zi
t and yi

t, we simply have

zi
t+1 = ǫi

t

yi
t+1 = zi

t

5

The three equations above can be grouped in the compact state equation

xt+1 = ft(xt, rt, ǫt)

where the domain of the function ft is a finite interval for wt
i and ri

t (0 ≤ wi
t ≤ W i and

0 ≤ ri
t ≤ Ri) and the whole real line for zi

t, yi
t and ǫi

t.

2.4 Constraints

We consider constraints on the water releases based on two different requirements

• each release is limited by a maximal pumpage capability;

• we adopt a “conservative” rule: the release can never exceed the amount at the
beginning of the period plus the water that gets in from the upstream reservoirs.
It is conservative because we do not consider the possible amount coming from the
inflows.

Therefore, the constraints for the i-th control ri
t are of the form

0 ≤ ri
t ≤ min







wi
t +

∑

j∈U i

rj
t , Ri







This also implies nonnegativity of wi
t+1.

2.5 Cost function

We consider the following objectives:

• keep the level of the water in the reservoirs, at the beginning of the new stage, as
close as possible to a target value w̃i

t, smaller than the maximum capacity.

• minimize the cost (maximize benefit) represented by some possibly nonlinear and
not convex generic function g of the water releases and/or water levels (e.g., power
generation, irrigation, etc.1)

In our example, we consider a nonlinear convex function g of the following form (for
z ∈ [0, +∞))

g(z, δ) =

{

z3

4δ2 − z4

16δ3 0 ≤ z ≤ 2δ
z − δ z > 2δ

Such a function models a benefit which becomes relevant for “large” values of the water
releases, depending on a suitable parameter δ. Figure 2 depicts the behaviour of the
function g. Then, the total cost function at stage t can be written as

ht(xt, rt, ǫt) =
10
∑

i=1

|wi
t+1 − w̃i

t+1| −
10
∑

i=1

pig(ri
t, δ

i)

1A list of different cost and benefit functions commonly employed in reservoir networks management
can be found in [37].

6

where pi ∈ R for i = 1, . . . , 10.
This cost function at stage t is separable in all its variables, and the terms with absolute

deviations are convex while the other terms are concave. However, it must be noted that
the algorithm described in this work is not dependent on the state and the cost equations.
Therefore, other formulations for g or the penalty on the water levels w̃i could be employed,
without changing the applicability of the proposed method2.

2.6 The optimization problem

We want each release rt to be a function of the current state vector (closed-loop control)

rt = µt(xt)

Therefore, with the state equation, the constraints and the cost above defined, we can
state the optimization problem as finding the optimal sequence r◦ = (µ◦

1(x1), . . . ,µ
◦
T (xT))

that solves

min
r1,...,rT

E
ǫ1,...,ǫT

{

T
∑

t=1

ht(xt, rt, ǫt)

}

s.t. x1 = x̃

xt+1 = ft(xt, rt, ǫt)

0 ≤ ri
t ≤ min







wi
t +

∑

j∈U i

rj
t , Ri







(1)

where x̃ is a given initial state.

3 SDP solution to the optimization problem

The SDP approach for the solution of a finite-horizon optimization problem is based on the
definition of a value function for a given time period, which corresponds to the optimal cost
to operate the system from the current time period through the end of the time horizon.
This value function is a function of the state variables, i.e., the optimal cost to operate
the system depends on the states. Formally, the value function can be written recursively
as

Ft(xt) = min
rt

E
ǫt

[ht(xt, rt, ǫt) + Ft+1(xt+1)]

s.t. xt+1 = ft(xt, rt, ǫt)

0 ≤ ri
t ≤ min







wi
t +

∑

j∈U i

rj
t , Ri







where the recursion is initialized by FT (xT)
△
= min

rT

E
ǫT

hT (xT , rT , ǫT), which corresponds

to FT+1(xT+1)
△
= 0.

It is clear that the optimal cost of the problem (1) corresponds to F1(x̃). If we obtain
the value functions for all the time periods, then given the initial state of the system, we
can track the optimal solution through the value functions. Thus, a DP solution is fully
specified by solving for the value functions. Further details can be found in [4, 28].

2For instance, in the particular case of benefit from power generation, g might be a function of the
water head variations too.

7

Unfortunately, it is well known that the value function equation can be analyti-
cally solved only when the state equation is linear and the cost function is quadratic
(LQ hypotheses), which is not true in the case of typical reservoir management prob-
lems. Furthermore, the analytical solution is not valid when inequality constraints are
present. Therefore, as we deal with continuous states, a numerical SDP solution requires
a computationally-tractable approximation method for the value functions. In particular,
when solving for Ft, we must be able to estimate the value of Ft+1 at any given point
xt+1.

This leads to the following algorithm

1. For each time period t = T, . . . , 1: Choose a set of N points Pt in the state space for
xt.

2. In the last period T :

(a) For each point xT ∈ PT , solve

FT (xT)
△
= min

rT

E
ǫT

hT (xT , rT , ǫT).

(b) Then approximate FT (xT) by F̂T (xT), over the state space for xT , using the
function outputs obtained for FT from step 2a.

3. In each period t = T − 1, . . . , 1:

(a) For each point xt ∈ Pt, solve

F̃t(xt) = min
rt

E
ǫt

[ht(xt, rt, ǫt) + F̂t+1(ft(xt, rt, ǫt))] (2)

(b) Then approximate F̃t(xt) with F̂t(xt), over the state space for xt, as in step
2b.

The algorithm is suboptimal, in the sense that F̃t(xt) is an approximate value of the true
value function. The suboptimality level is given by (i) how accurately the minimum value
function is computed, (ii) how accurate the estimation of the expected value is with respect
to ǫt (typically, by averaging over a finite number of realizations) and (iii) how close the
approximation F̂t(xt) is to the true value function.

The minimization problem in steps 2a and 3a must be solved N times, and each solution
requires substantial computational effort. Therefore, the choice of a good set of points Pt,
in the sense that its size does not need to grow too much with the dimension of the state
space in order to ensure a desired accuracy of approximation, is crucial for acceptable
computational requirements. This is particularly true for very high dimensional contexts
such as our 30-dimensional reservoirs problem.

Since we have no prior knowledge of the form of the value function, it is reasonable to
choose sets which cover the state space uniformly. The most widely used technique in the
DP literature consists of an uniform grid over the state space, which grows exponentially
in the number of points with the dimension of the state vector (curse of dimensionality).

Recently, more advanced discretization techniques have been proposed in literature.
In [29] it is proven that Monte Carlo sampling can break the curse of dimensionality of

8

DP, but only for particular cases, and when the set of possible decisions is finite (which is
not the case of water releases in reservoirs operation). On the other hand, deterministic
experimental designs are receiving a great deal of attention due to their successful applica-
tion in many fields [11, 18, 22, 23, 24]. For SDP, OA experimental designs have permitted
a solution to a nine-dimensional inventory forecasting problem [9]. The OA, OA-LH, and
number-theoretic designs we utilize here are discussed further in Section 4.2.

For the choice of approximator to estimate the value functions, the requirement for
a computationally-tractable solution is to use structures that can approximate high-
dimensional nonlinear functions with sufficient accuracy and without excessive compu-
tational complexity. In particular, the complexity of the approximator must not grow
exponentially in order to obtain a certain level of accuracy as the dimension of the input
vector grows (which can be seen as another form of curse of dimensionality).

In this paper we use feedforward neural networks [16], due to their well-known theoret-
ical properties as universal approximators [2] and their success in a wide range of different
application fields, including DP [5].

4 Solving the 30-dimensional Model

4.1 Feedforward Neural Networks

As known, the basic architecture of feedforward neural networks is an interconnection of
neural nodes that are organized in layers. The input layer consists of n nodes, one for
each input variable, and the output layer consists of one node for the output variable. In
between there are hidden layers which induce

flexibility into the modeling. Activation functions define transformations between lay-
ers, the simplest one being a linear function. A comprehensive description of various forms
may be found in [16].

In our reservoirs management SDP application, we utilized a feedforward one-hidden-
layer NN (FF1NN) with a “hyperbolic tangent” activation function: Tanh(x) = (ex −
e−x)/(ex + e−x). Define n as the number of input variables, Q as the number of hidden
nodes, βkq as weights linking input nodes k to hidden nodes q, αq as weights linking hidden
nodes q to the output node, and θq, γ ∈ R are called “bias” nodes.

Then our FF1NN model form for the approximation of the t-th value function is

F̂t(x; α, β, θ, γ) =
Q
∑

q=1

αqZq + γ,

where for each hidden node q

Zq = Tanh

(

n
∑

i=1

βiqxi + θq

)

.

For our tests, the training of the parameters βiq, αq, θq, and γ was performed by
minimizing a mean squared error (MSE) between the output of the network and the true
value functions in the N points of the set Pt (the set of the input-output pairs used for
the training takes the name of training set)

MSE(F̂t) =
N
∑

j=1

[Ft(xt,j) − F̂t(xt,j , α, β, θ, γ)]2,

9

where xt,j indicates the j-th point of the set Pt. The nonlinear optimization technique
used to conduct the minimization was the Levenberg-Marquardt method (one of the best
training algorithms for feedforward neural networks, in terms of rate of convergence, first
introduced in [15]), which is an approximation of the classic second-order (i.e., it makes
use of the Hessian matrix) Newton method.

For what concerns the choice of the number Q of nodes in the hidden layer, existing
theoretical bounds on the accuracy of the approximation are non-constructive or too loose
to be useful in practice. Thus, it is not possible to define “a priori” the optimal number of
hidden nodes, since it depends on the number of samples available and on the smoothness
of the function we want to approximate. Too few nodes would result in a network with
poor approximation properties, while too many would “overfit” the training data (i.e.,
the network merely “memorizes” the data at the expense of generalization capability).
Therefore, a tradeoff between these two possibilities is needed. There are many rules of
thumb and methods for model selection and validation in the literature, as well as methods
to avoid or reduce overfitting [16], but the choice of a good architecture usually requires
several modeling attempts and is always very dependent on the particular application.

4.2 State Space Discretization

For the solution of our 30-dimensional reservoirs management test problem, efficient dis-
cretization of the state space was critical for computational practicality. In a statistical
perspective, state space discretization is equivalent to experimental design. The traditional
full grid of points is equivalent a full factorial statistical design of experiment. Since the
full factorial is considered by statisticians to be too large in practice for high dimensions,
a variety of more efficient experimental designs have emerged (see [10] for a review). In
this paper, we tested four types of designs: (i) orthogonal array (OA) of strength two,
(ii) OA-based Latin hypercubes (OA-LH), (iii) low-discrepancy Sobol′ (SB) sequences,
and (iv) low-discrepancy Niederreiter-Xing (NX) sequences. For each design type, we
constructed discretizations with N = 961 and N = 1849 points, for a total of 8 different
discretizations.

First consider a design with p levels in each of n dimensions. A full grid would consist
of N = pn points. An OA design of strength d is a fractional factorial design with
the property that if we look at any d of the n dimensions, then each of the pd possible
combinations of levels of these d variables occurs equally often, say λ times, in the design.
Thus, an OA design has N = λpd. In our case we chose λ = 1 and strength d = 2.
Spatially, when the design points of an OA of strength two with λ = 1 are projected
onto any two-dimensional subspace, each point of the two-dimensional full factorial with
p levels in each dimension will be represented exactly once. Specifically, we used p = 31
to generate N = 961 points and p = 43 to generate N = 1849 points.

A Latin hypercube (LH) design is mathematically equivalent to an OA of strength
one (although such an OA is technically not an orthogonal design). When the points of
an LH are projected onto any single dimension, all p levels will be represented exactly
once. Thus, we can consider N = p for an LH. High correlations between dimensions are
unfortunately possible in an LH design, and hybrid OA-LH designs attempt to overcome
this drawback. An OA-LH design takes the points of an OA and utilizes a mapping on
the p levels to convert the design into an LH. For our OA-LH designs, we utilized the
961-point and 1849-point OA design previously mentioned.

10

A number-theoretic method, a.k.a., quasi-Monte Carlo method, uses number theory
and numerical analysis to generate a point set that is uniformly-spaced. The general
study of uniformly distributed sequences was initiated in 1916 by Herman Weyl [35, 36],
who defined the notion of “discrepancy” to quantify the quality of uniformity of a finite
point set. Current research seeks to construct “low-discrepancy” sequences. Define an
elementary interval in base q over [0, 1)s as an s-dimensional subrectangle with component
intervals of the form:

[aj , bj) =
[

αj/qlj , (αj + 1)/qlj
)

for integers lj ≥ 0 and 0 ≤ αj < qlj . A (t, m, s)-net in base q on [0, 1)s consists of
qm points such that every elementary interval in base q of volume qt−m contains exactly
qt points. A (t, s)-sequence in base q is an infinite sequence of points {Xi} such that
for all integers k ≥ 0 and m ≥ t, the finite sequence {Xkqm+1, . . . , X(k+1)qm+1} is a
(t, m, s)-net in base q. Sobol′ sequences are (t, s)-sequences in base 2 (C++ code obtained
from http://ldsequences.sourceforge.net/), and Niederreiter-Xing sequences construct (t, s)-
sequences in base q (generators obtained from http://www.dismat.oeaw.ac.at/pirs/niedxing.html).
The use of low-discrepancy sequences in function learning contexts (as is the value func-
tion approximation problem in the SDP algorithm) has been studied in [6], where it is
proven that such discretization schemes allow an almost linear sample complexity for the
estimation error, i.e., the error between the “best” neural network for a given number of
hidden nodes and the actual network obtained after the training decreases almost linearly
with N .

4.3 Parameters of the SDP solutions

The 30-dimensional reservoirs management SDP problem was solved over three time pe-
riods (T = 3). Conceptually, solving for longer horizons does not add difficulties to the
SDP problem: as discussed in the previous sections, the aim of the proposed method is to
address the curse of dimensionality that depends only on the size of the state vector, and
not on the number of time stages (in fact, the computational requirements are just linear
in the number of time periods T). What is to be expected is at each stage the error in
the approximation of the optimal value functions “propagates” backwards. Unfortunately,
establishing a “global” bound for such error is possible only when the DP problem satisfies
specific assumptions. For example, there is the case of discounted problems, where in the
DP equations the value function is weighted by a parameter 0 < µ < 1 (see, e.g., [29]). In
the general case, we must assume that the approximation errors sum through the stages.

Tables 1 and 2 contain the most relevant numerical quantities for the various reservoirs.
Table 7 contains the coefficients of the autoregressive model for the inflows dynamics corre-
sponding to the first three time periods. The target levels w̃i

t are constant for each t, with
values indicated in the tables. The considered initial point x̃ corresponds to such target
levels for the various reservoirs. The expectation of the value functions in equation (2)
taken over the 10-dimensional random vector ξt were estimated using an average over
a finite number of realizations from a standard normal distribution. Different numbers
of realizations were tested3, and in the end 10 realizations were chosen as a compromise
between accuracy and computational effort. Using more than 10 realizations increased

3In particular, costs F̃t(xt) were computed for a set of test points xt at various stages, averaging over
increasing numbers of realizations.

11

the computational time without leading to significatively different costs4. In any case,
while more accurate results might be achieved with more realizations, the approximation
of the expected value is not a key aspect of this paper since it is not affected by curse of
dimensionality (see, e.g., Hoeffding’s inequality [17]).

Many solutions were obtained by testing different values of Q. Depending on the size
and kind of design employed, FF1NNs with Q = 10 and Q = 15 hidden nodes gave the
best results. Both the minimizations for the computation of the value function in a given
point and the training of the FF1NN approximations were implemented in MATLAB,
using the “Optimization” and “Neural Network” toolboxes5. Computing a value function
approximation for a single time period t (which corresponds to (i) solving the minimization
for the N points of Pt and (ii) training of the FF1NN) required approximately 2 hours and
45 minutes for N = 961 points and 10 neural units on a Pentium IV 1.60 GHz machine
with 256Mb RAM.

4.4 Results

Since there are no analytical nor approximate solutions for the 30-dimensional problem
to which we can compare the SDP method described here, the evaluation of the results is
performed on the basis of many different solutions obtained with the SDP method itself. In
our case, one SDP solution is defined by the discretization scheme employed, the number of
neural units Q and number of points N of the discretization. Such a procedure has already
been used in [9] to evaluate the results of the SDP method applied to a nine-dimensional
inventory forecasting problem.

Simulations using the “reoptimizing policy,” based on the forward solution of the value
function equations (as described in [7]), were conducted to find the optimal water releases
for a given sequence of random inflows and test the SDP solutions. This represents the “on-
line” forward phase of the optimization procedure: at the beginning of each stage, optimal
releases for the actual value of the water levels are computed by equation (2) using the
neural approximations obtained “off-line.” Then, such optimal releases are fed into the
state equation, which provides the water levels for the next stage according to the actual
random inflows, and the new releases can be computed in the same way. Starting from
x̃, a simulation of 100 “on-line” random inflows sequences was conducted for each SDP
solution. For a given solution (i.e., given Q, N and discretization scheme), the simulation
output provided the mean costs over the 100 sequences. In order to compare the different
solutions, the smallest cost achieved among the set of all the various SDP solutions for
each the 100 random inflows sequences was used as the “true” cost for that particular
sequence. A total of 8 different solutions have been considered for the evaluation of the
results, each one providing the lowest mean cost for each of the 8 combinations of design
scheme and number of points N . The average “true” mean cost over the 100 sequences
(i.e., the average obtained by taking the best cost for each sequence) was approximately
−282. This is the mean cost to which the mean costs of the single SDP solutions have
been compared.

Table 3 summarizes, for the aforementioned 8 solutions, the mean costs (over the 100
inflows), number of neural nodes Q, and % average absolute error with respect to the “true”

4For instance, using 100 realizations instead of 10 led to costs that were averagely only 1.5-2% different.
5In particular, the function ‘fmincon’, based on a quasi-Newton algorithm, has been employed for the

minimizations.

12

mean cost. Boxplots in Figure 3 display the distributions of the absolute errors for each
solution with respect to the 100 random inflows sequences. The box marks the 25th and
75th percentiles of the distribution while the line inside marks the median value. Outlier
points are seen beyond the lines extending from the box. The best solutions will have
small boxes (low variance) that are close to zero (low absolute error). The worst solutions
are those of the 961-point OA and OA-LH, the former because of higher absolute error
and the latter because of larger variance. The remaining designs are somewhat equivalent;
however, the 1849-point Sobol′ sequence is seen as providing the best solution.

Optimal trajectories for two different solutions, namely the 961-point OA design (OA-
961) and the 1849-point Sobol′ sequence (SB-1849), were recorded for the two random
inflow sequences shown in Table 4. Tables 5 and 6 compare the two solutions. It can be
seen that the target water levels are generally attained at each stage, even for the “worst”
solution in absolute error.

However, how close the levels are to the target levels depends on how much the other
contribution to the cost (i.e., “benefit” part) is weighted through the coefficients pi.

5 Conclusions

A computationally-tractable SDP method for the optimal management of large-scale water
reservoir networks was presented. The use of innovative discretization schemes, such as
OAs and (t, m, s)-nets, allows to deal effectively with the curse of dimensionality problems,
arising from the number of basins and realistic modeling of the random inflows. Four
different design types have been tested and compared in a 30-dimensional test problem.
The employment of such discretization schemes has allowed the solution of a problem
which would have been unsolvable by classic DP techniques. The great interest currently
devoted to deterministic designs by the scientific community leads one to believe that a
further understanding and development of these techniques, together with their application
in the SDP framework, can provide new interesting opportunities for solving even larger
and more difficult problems.

Acknowledgements

This work was partially supported by NSF Grants #INT 0098009 and #DMI 0100123 and
a Technology for Sustainable Environment (TSE) grant under the U. S. Environmental
Protection Agency’s Science to Achieve Results (STAR) program (Contract #R-82820701-
0).

References

[1] T.W. Archibald, K.I.M. McKinnon, L.C. Thomas, An aggregate stochastic dynamic
programming model of multireservoir systems, Water Resources Research 33 (1997)
333–340.

[2] A.R. Barron, Approximation and estimation bounds for artificial neural networks,
Machine Learning 14 (1994), 115–133.

[3] R. Bellman, Dynamic Programming, Princeton University Press, Princeton, 1957.

13

[4] D. Bertsekas, Dynamic Programming and Optimal Control, Vol. 1, 2nd ed., Athena
Scientific, Belmont, 2000.

[5] D.P. Bertsekas, J.N. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, Bel-
mont, 1996.

[6] C. Cervellera, M. Muselli, Deterministic design for neural network learning: an ap-
proach based on discrepancy, IEEE Transactions on Neural Networks 15 (2004) 533–
544.

[7] V.C.P. Chen, Application of MARS and orthogonal arrays to inventory forecasting
stochastic dynamic programs, Computational Statistics and Data Analysis 30 (1999)
317–341.

[8] V.C.P. Chen, Measuring the goodness of orthogonal array discretizations for stochas-
tic programming and stochastic dynamic programming, SIAM Journal of Optimiza-
tion 12 (2001) 322–344.

[9] V.C.P. Chen, D. Ruppert, C.A. Shoemaker, Applying experimental design and regres-
sion splines to high-dimensional continuous-state stochastic dynamic programming,
Operations Research 47 (1999) 38–53.

[10] V.C.P. Chen, K.-L. Tsui, R. R. Barton, J. K. Allen, A review of design and modeling
in computer experiments, in: C.R. Rao, R. Khattree (Eds.), Handbook in Industrial
Statistics, Vol. 22, Elsevier Science, Amsterdam, 2003, pp. 231–261.

[11] K.-T. Fang, Y. Wang, Number-theoretic Methods in Statistics, Chapman & Hall,
London, 1994.

[12] E. Foufoula-Georgiou, P.K. Kitanidis, Gradient dynamic programming for stochas-
tic optimal control of multidimensional water resources systems, Water Resources
Research 24 (1988) 1345–1359.

[13] S. Gal, Optimal management of a multireservoir water supply system, Water Re-
sources Research 15 (1979) 737–749.

[14] A.P. Georgakakos, Extended linear quadratic Gaussian control for the real time op-
eration of reservoir systems, in: A.O. Esogbue (Ed.), Dynamic Programming for Op-
timal Water Resources Systems Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1989,
pp. 329-360.

[15] M.T. Hagan, M. Menhaj, Training feedforward networks with the marquardt algo-
rithm, IEEE Transactions on Neural Networks 5 (1994) 989–993.

[16] S. Haykin, Neural Networks: A Comprehensive Foundation (2nd Edition), Prentice
Hall, New Jersey, 1999.

[17] W. Hoeffding, Probability inequalities for sum of bounded random variables, Journal
of the American Statistical Association 58 (1963) 13–30.

[18] L.K. Hua, Y. Wang, Applications of Number Theory to Numerical Analysis, Springer-
Verlag, Berlin, 1981.

14

[19] D. Jacobson, D. Mayne, Differential Dynamic Programming, Academic, New York,
1970.

[20] S.A. Johnson, J.R. Stedinger, C.Shoemaker, Y.Li, J.A. Tejada-Guibert, Numerical
solution of continuous-state dynamic programs using linear and spline interpolation,
Operations Research 41 (1993) 484–500.

[21] B.F. Lamond, M.J. Sobel, Exact and approximate solutions of affine reservoirs models,
Operations Research 43 (1995) 771–780.

[22] W.J. Morokoff, R.E. Caflisch, A Monte Carlo technique with quasirandom points for
the stochastic shortest path problem, American Journal of Mathematics and Man-
agement Sciences 7 (1987) 325–358.

[23] W.J. Morokoff, R.E. Caflisch, A quasi-Monte Carlo approach to particle simulation
of the heat equation, SIAM Journal of Numerical Analysis 30 (1993) 1558–1573.

[24] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods,
SIAM, Philadelphia, 1992.

[25] H. Niederreiter, C.P. Xing, Low-discrepancy sequences obtained from algebraic func-
tion fields over finite fields, Acta Arithmetica 72 (1995) 281–298.

[26] H. Niederreiter, C.P. Xing, Low-discrepancy sequences and global function fields with
many rational places, Finite Fields and Their Application 2 (1996) 241–273.

[27] C.R. Philbrick Jr., P.K. Kitanidis, Improved dynamic programming methods for opti-
mal control of lumped-parameter stochastic systems, Operations Research 49 (2001)
398–412.

[28] M. Puterman, Markov Decision Processes, Wiley, New York, 1994.

[29] J. Rust, Using randomization to break the curse of dimensionality, Econometrica 65
(1997) 487–516.

[30] J.D. Salas, G.Q. Tabios III, P. Bartolini, Approaches to multivariate modeling of
water resources time series, Water Resources Bullettin 21 (1985) 683–708.

[31] V. Sharma, R. Jha, R. Naresh, Optimal multi-reservoir network control by two-phase
neural network, Electric Power Systems Research 68 (2004) 221-228.

[32] I.M. Sobol’, The distribution of points in a cube and the approximate evaluation
of integrals, USSR Computational Mathematics and Mathematical Physics 7 (1967)
784–802.

[33] B. Tang, Orthogonal array-based latin hypercubes, Journal of the American Statisti-
cal Association 88 (1993) 1392–1397.

[34] A. Turgeon, A decomposition method for the long-term scheduling of reservoirs in
series, Water Resources Research 17 (1981) 1565–1570.

[35] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Mathematische Annalen
77 (1916) 313–352.

15

[36] H. Weyl, Selecta Hermann Weyl, Birkhäuser, Basel, Switzerland, 1956.

[37] S. Yakowitz, Dynamic programming applications in water resources, Water Resources
Research 18 (1982) 673–696.

16

Res. 1 Res. 2 Res. 3 Res. 4 Res. 5

Target Water Level(∗) 200 250 260 270 220

Maximum Reservoir Capacity(∗) 433 420 460 440 423

Maximum Pumpage Capability(∗) 80 80 80 80 80

Coefficient p of the benefit 0.15 0.12 0.11 0.13 0.15

Parameter δ of the benefit 5 5 5 5 5

Table 1: Relevant numerical quantities for reservoirs 1-5 ((∗) in 105 cubic meters)

Res. 6 Res. 7 Res. 8 Res. 9 Res. 10

Target Water Level(∗) 420 200 500 180 340

Maximum Reservoir Capacity(∗) 860 820 972 495 980

Maximum Pumpage Capability(∗) 190 160 300 70 300

Coefficient p of the benefit 0.09 0.13 0.21 0.23 0.29

Parameter δ of the benefit 10 8 25 5 25

Table 2: Relevant numerical quantities for reservoirs 6-10 ((∗) in 105 cubic meters)

Design Q Mean Cost % Avg. Abs. Error

OA-961 15 -263.3488 6.5

LH-961 15 -273.2001 3.0

SB-961 15 -276.5661 1.8

NX-961 15 -275.7479 2.1

OA-1849 15 -277.3321 1.5

LH-1849 10 -274.5260 2.5

SB-1849 10 -278.8036 1.0

NX-1849 10 -277.1163 1.6

Table 3: Results of the best solutions for each design kind.

17

Sequence 1 Sequence 2

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

Res. 1 24.0616 29.9666 24.2993 25.0914 25.0437 27.3628

Res. 2 27.2013 25.7100 21.1875 23.0857 23.6270 26.2819

Res. 3 22.4524 21.9788 26.7324 29.9183 31.1287 25.1853

Res. 4 26.7606 27.1361 22.6921 25.7099 19.3082 17.3084

Res. 5 22.3314 26.1024 18.3354 22.6135 29.4487 21.4386

Res. 6 10.7030 18.2211 12.1199 7.3364 17.7414 9.0794

Res. 7 11.3328 18.5393 10.9239 13.0718 17.1544 9.7368

Res. 8 13.1277 19.5333 10.0272 15.4494 18.9582 9.0236

Res. 9 13.8086 17.3705 11.0396 15.7709 17.2677 10.9686

Res. 10 9.1711 10.2328 5.5590 10.7348 10.6330 5.5861

Table 4: Two test random inflows sequences.

Trajectory OA-961 Trajectory SB-1849

t = 2 t = 3 final t = 2 t = 3 final

Res. 1 193.9817 202.7601 197.5512 197.6056 202.2419 196.6210

Res. 2 248.3936 249.1060 243.0062 252.6791 243.8508 243.0215

Res. 3 253.9718 254.8554 262.3820 256.0772 253.3951 262.3777

Res. 4 267.4587 269.2587 265.2953 259.5019 266.2629 265.2853

Res. 5 214.2049 218.8262 211.5961 210.2411 197.9080 211.6405

Res. 6 417.1801 420.2837 421.3650 417.2392 420.1057 421.2907

Res. 7 197.2793 200.5463 200.0649 196.6209 200.1499 200.0677

Res. 8 499.1866 501.3877 498.5197 499.2612 500.0890 498.5143

Res. 9 183.2954 180.4634 180.5232 193.8086 179.7850 180.5328

Res. 10 339.9018 340.0963 340.2778 339.8386 340.1710 340.2848

Table 5: Optimal trajectories for sequence 1.

18

Trajectory OA-961 Trajectory SB-1849

t = 2 t = 3 final t = 2 t = 3 final

Res. 1 195.0115 197.5205 202.6701 198.6353 196.5662 201.4190

Res. 2 244.2780 247.2951 249.5624 248.5635 243.8131 249.4248

Res. 3 261.4377 263.2719 255.7966 263.5431 260.3609 254.5258

Res. 4 266.4080 261.5670 263.5017 258.4512 248.9906 263.1753

Res. 5 214.4870 222.0576 213.1181 210.5232 201.2631 213.1496

Res. 6 413.8135 419.8719 418.6886 413.8725 419.7783 418.6210

Res. 7 199.0183 198.9458 199.2050 198.3599 198.6099 199.1159

Res. 8 501.5083 500.6115 497.5223 501.5828 500.0748 497.4771

Res. 9 185.2577 180.1957 180.3169 195.7709 179.6713 180.4177

Res. 10 341.4655 340.4113 340.1176 341.4022 340.4085 340.1453

Table 6: Optimal trajectories for sequence 2.

Res. 1-5 Res. 6-9 Res. 10

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

a 1.28 .90 .74 .11 .09 .05 .44 .30 .23

b 0 0 0 .47 .32 .3 .13 .08 .05

c 23.9 15 7.3 78 65.4 32.5 39.4 20.3 12.2

d 41 27.6 18.9 29.3 10.4 3.5 28.8 9.3 2.2

Table 7: Coefficients of the autoregressive process for the random inflows.

19

Figure 1: Reservoir Network.

20

δ

Figure 2: Behaviour of the benefit function.

21

1 2 3 4 5 6 7 8

0

5

10

15

20

25

30

35

A
bs

ol
ut

e
E

rr
or

SDP Solutions

Figure 3: (1) OA-961 (2) LH-961 (3) SB-961 (4) NX-961 (5) OA-1849 (6) LH-1849 (7)
SB-1849 (8) NX-1849

22

