A New Family of Recursive Power-Series Distributions

H.W. Corley and Seoung Bum Kim

Department of Industrial and Manufacturing Systems Engineering
The University of Texas at Arlington
Arlington, Texas 76019-0017
\{corley,sbkim\}@uta.edu

August 26, 2006

Abstract

A new family of recursive power-series distributions involving the generalized hypergeometric function is proposed. The probability generating and moment generating functions are given; and extensions of the Poisson, geometric, negative binomial, log-series, and generalized Waring distributions are presented as examples.

Keywords: discrete distributions, power-series distributions, generalized hypergeometric function
1. Introduction

The hypergeometric function introduced by Gauss can be obtained from the differential equation

\[\theta(1-\theta)\frac{d^2y}{d\theta^2} + [c - (a + b + 1)\theta] \frac{dy}{d\theta} - aby = 0, \]

where \(a, b, c,\) and \(\theta\) are the parameters. It is shown in Redheffer and Port (1992) that a solution of the form

\[y(\theta) = \sum_{n=0}^{\infty} a_n \theta^n \]

reduces to

\[y(\theta) = a_0 \left[a + \frac{ab}{c} \theta + \frac{a(a+1)b(b+1)}{2!(c+1)} \theta^2 + \frac{a(a+1)(a+2)b(b+1)(b+2)}{3!(c+1)(c+2)} \theta^3 + \ldots \right] . \] (1)

The bracketed expression in (1) is called the hypergeometric function and can be expressed as

\[F(a, b, c; \theta) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n \theta^n}{(c)_n n!} , \] (2)

where \((c)_n\) is the shifted factorial, or Pochhammer symbol (Seaborn, 1991), defined as \((c)_0 = 1,\) and \((c)_n = (c)(c+1)\cdots(c+n-1), n = 1, 2, 3, \ldots.\) Note that \(c\) does not have to be an integer.

In this paper we consider a family of discrete random variables \(\{X_k : k = 0, 1, 2, \ldots\}\), each with parameter \(\theta\) and values \(n = 0, 1, 2, \ldots.\) Denote the probability mass function (p.m.f.) of \(X_k\) by \(p_k(n) = P_r[X_k = n].\) We present here a family of power-series distributions \(p_k(n)\) involving the generalized hypergeometric function (Andrews, 1985) defined by

\[_{s} F_{t}(a_1, \ldots, a_s; b_1, \ldots, b_t; \theta) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_s)_n \theta^n}{(b_1)_n \cdots (b_t)_n n!} , \] (3)

where \(s, t\) are non-negative integers. Obviously (2) is a special case. When \(s = t = 0,\) (3) remains valid if in the appropriate position no symbols appear. For example, \(0F_1(-; b_1; \theta) = \sum_{n=0}^{\infty} \frac{\theta^n}{(b_1)_n n!}.\) The series (3) converges for all \(\theta\) if \(s < t + 1.\) When \(s = t + 1,\) it converges for \(|\theta| < 1,\) diverges for \(|\theta| > 1,\) and may do either for \(\theta = 1.\) If \(s > t + 1,\) (3) diverges for all \(\theta\) except \(\theta = 0.\) We assume here that \(s \leq t + 1\) and \(a_1, \ldots, a_s, b_1, \ldots, b_t > 0\) are fixed, with the parameter \(\theta > 0\) such that (3) converges to a positive number. If \(s = t = 0,\) all results remain valid except that, respectively, no \(a_i\) or \(b_j\) appears.

In Section 2 we use (3) to develop a family of recursive power-series distributions and derive their probability and moment generating functions. Then in Section 3 we present five special cases: (i) a recursive Poisson distribution, (ii) a recursive geometric distribution, (iii) a recursive negative
binomial distribution, (iv) a recursive log-series distribution, and (v) a recursive generalized Waring distribution. Each of these special cases yields new discrete distributions. Section 4 contains some concluding remarks and suggestions for further research.

2. Recursive Power-Series Distributions

2.1 Development

We now present several lemmas and a theorem to develop a class of p.m.f involving the generalized hypergeometric function and the recursive operator \(T_k \) (Schwatt, 1962; Comtet, 1973). For a differentiable function \(G(\theta) \) of \(\theta \), define the operator \(T_k \) by

\[
T_k[G(\theta)] = \frac{d^k}{d\theta^k} \left\{ \frac{d}{d\theta} \left\{ \frac{d}{d\theta} \left\{ \cdots \frac{d}{d\theta} G(\theta) \right\} \right\} \right\}, \quad k = 1, 2, 3, \ldots ,
\]

where the operator \(\frac{d^k}{d\theta^k} \) involves the argument \(\theta \) of \(G \). \(T_1 \) is a special case of the Lie derivative, and \(T_k \) represents \(k \) successive applications. Lemma 1 is proved in Schwatt (1962, pp. 81–83).

Lemma 1 For \(k=1,2,3, \ldots , \)

\[
T_k[G(\theta)] = \sum_{n=0}^{\infty} a_{n,k} \theta^n \cdot \frac{d^n G(\theta)}{d\theta^n},
\]

where \(a_{n,k} = \frac{(-1)^k}{k!} \sum_{i=1}^{\infty} (-1)^i \binom{k}{i} i^n \).

Next, in Lemma 2, we find \(\frac{d^k G(\theta)}{d\theta^k} \) in Lemma 1 for \(G(\theta) = {}_s F_t(a_1, \ldots, a_s; b_1, \ldots, b_t; \theta) \).

Lemma 2 For \(k=1,2,3, \ldots , \)

\[
\frac{d^k}{d\theta^k} {}_s F_t(a_1, \ldots, a_s; b_1, \ldots, b_t; \theta) = \frac{(a_1)_k \cdots (a_s)_k}{(b_1)_k \cdots (b_t)_k} {}_s F_t(a_1+k, \ldots, a_s+k; b_1+k, \ldots, b_t+k; \theta).
\]

Proof. For \(k = 1, 2, 3, \ldots , \) and \(n = 0, 1, 2, \ldots , \) the definition of \((c)_n \) immediately gives \((a_i+k)_n = \frac{(a_i)_n (a_i+1) \cdots (a_i+n)}{(a_i)_n} \), \(i = 1, \ldots, s \), and \((b_j+k)_n = \frac{(b_j)_n (b_j+1) \cdots (b_j+n)}{(b_j)_n} \), \(j = 1, \ldots, t \). It follows from (3) that

\[
{}_s F_t(a_1+k, \ldots, a_s+k; b_1+k, \ldots, b_t+k; \theta) = \frac{(b_1)_k \cdots (b_t)_k}{(a_1)_k \cdots (a_s)_k} \sum_{n=0}^{\infty} \frac{(a_1)_n+k \cdots (a_s)_n+k \theta^n}{(b_1)_n+k \cdots (b_t)_n+k \cdot n!}.
\]
Or,

\[
\frac{(a_1)k \cdots (a_s)k}{(b_1)k \cdots (b_t)k} \cdot F_i(a_1 + k, \ldots, a_s + k; b_1 + k, \ldots, b_t + k; \theta)
\]

\[
= \sum_{n=0}^{\infty} \frac{(a_1)_{n+k} \cdots (a_s)_{n+k} \theta^n}{(b_1)_{n+k} \cdots (b_t)_{n+k} n!}.
\]

But directly from (3),

\[
\frac{d^k}{d\theta^k} F_i(a_1, \ldots, a_s; b_1, \ldots, b_t; \theta)
\]

\[
= \sum_{n=k}^{\infty} \frac{(a_1)_n \cdots (a_s)_n \theta^{n-k}}{(b_1)_n \cdots (b_t)_n (n-k)!}.
\]

\[
= \sum_{n=0}^{\infty} \frac{(a_1)_{n+k} \cdots (a_s)_{n+k} \theta^n}{(b_1)_{n+k} \cdots (b_t)_{n+k} n!}.
\]

The lemma now follows.

Lemma 1 and 2 yield the closed form of \(T_k \left[F_i(a_1, \ldots, a_s; b_1, \ldots, b_t; \theta) \right] \) by direct substitution.

Lemma 3 For \(k=1,2,3, \ldots, \)

\[
T_k \left[F_i(a_1, \ldots, a_s; b_1, \ldots, b_t; \theta) \right] = \sum_{i=1}^{k} \sum_{j=1}^{i} \frac{(a_1)_{i} \cdots (a_s)_i (-1)^{i+j}}{(b_1)_i \cdots (b_t)_i i!} \frac{1}{j!} j^k \theta^j F_i(a_1 + i, \ldots, a_s + i; b_1 + i, \ldots, b_t + i; \theta).
\]

We now state our main result as Theorem 1, which establishes that normalizing the result of Lemma 3 yields a new family of discrete recursive power series distributions.

Theorem 1 Let \(\{X_k : k = 0, 1, 2, \ldots\} \) be a family of discrete random variables, each with parameter \(\theta \) and values \(n = 0, 1, 2, \ldots \). Then

\[
p_0(n) = \frac{\theta^n}{\sum_{n=0}^{\infty} \frac{(a_1)_{n} \cdots (a_s)_n \theta^n}{(b_1)_n \cdots (b_t)_n n!}},
\]

\[
p_k(n) = \frac{\sum_{i=1}^{k} \sum_{j=1}^{i} \frac{(a_1)_{i} \cdots (a_s)_i (-1)^{i+j}}{(b_1)_i \cdots (b_t)_i i!} \frac{1}{j!} j^k \theta^j F_i(a_1 + i, \ldots, a_s + i; b_1 + i, \ldots, b_t + i; \theta)}{\sum_{n=0}^{\infty} \frac{(a_1)_{n} \cdots (a_s)_n \theta^n}{(b_1)_n \cdots (b_t)_n n!}}.
\]

\(k = 1, 2, 3, \ldots, \) is a p.m.f. for \(X_k, k = 0, 1, 2, \ldots \).
Proof. Apply T_k directly to both sides of (3), divide by the resulting left side, and use Lemma 3. For $k = 0$, these steps yield

$$
\frac{T_0\left[\sum_{n=0}^{\infty} \frac{(a_1n\cdots a_s)n^n}{(b_1n\cdots b_t)n^n} \theta^n\right]}{T_0\left[sF_t(a_1, \ldots, a_s; b_1, \ldots, b_t; \theta)\right]} = \frac{\sum_{n=0}^{\infty} \frac{(a_1n\cdots a_s)n^n}{(b_1n\cdots b_t)n^n} \theta^n}{sF_t(a_1, \ldots, a_s; b_1, \ldots, b_t; \theta)}
$$

$$
= \sum_{n=0}^{\infty} p_0(n)
= 1.
$$

Similarly, for $k = 1, 2, 3, \ldots$,

$$
\frac{T_k\left[\sum_{n=0}^{\infty} \frac{(a_1n\cdots a_s)n^n}{(b_1n\cdots b_t)n^n} \theta^n\right]}{T_k\left[sF_t(a_1, \ldots, a_s; b_1, \ldots, b_t; \theta)\right]} = \frac{\sum_{n=0}^{\infty} \frac{(a_1n\cdots a_s)n^n}{(b_1n\cdots b_t)n^n} n^k \theta^n}{\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{(a_1j\cdots a_sj)(-1)^{j-1}}{n!} (\theta)^i j^k \theta^i F_t(a_1 + i, \ldots, a_s + i; b_1 + i, \ldots, b_t + i; \theta)}
$$

$$
= \sum_{n=0}^{\infty} p_k(n)
= 1.
$$

Since $p_k(n) \geq 0$ for $k = 0, 1, 2, \ldots$, and $n = 0, 1, 2, \ldots$, the proof is complete.

We call (6) and (7) a family of recursive power-series distributions since the application of (5) in Lemma 3 yields (6) and (7). For $k = 0$ and particular values of $s, t, a_1, \ldots, a_s, b_1, \ldots, b_t, \theta$, some common discrete distributions cases will be shown as special cases of $p_k(n)$ in Section 3. Moreover, we extend these common distributions when $k = 1, 2, 3, \ldots$. An intuitive interpretation is that increasing k represents an evolution of the phenomenon modeled by the stochastic process $\{X_k : k = 0, 1, 2, \ldots\}$ with its fixed parameters $s, t, a_1, \ldots, a_s, b_1, \ldots, b_t, \theta$. For example, increasing k could be viewed as an index of time, dispersion, or transmission. Alternately, each distribution $p_k(n)$ with fixed $s, t, a_1, \ldots, a_s, b_1, \ldots, b_t, \theta$ can be used individually to model phenomena, where k then becomes simply another parameter to be chosen.

2.2 The Probability and Moment Generating Functions

The probability generating function (p.g.f.) and moment generating function (m.g.f.) of the general recursive power-series distributions are now presented, from which various moments of the random
variables can be obtained. For fixed \(s, t, a_1, \ldots, a_s, b_1, \ldots, b_t\), we note that the denominator for \(p_k(n)\) in (6) and (7) can also be expressed as

\[
D_k(\theta) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_s)_n}{(b_1)_n \cdots (b_t)_n} \frac{n^k \theta^n}{n!}, \quad k = 0, 1, 2, \ldots
\]

Now let \(P_k(z)\) be the p.g.f. \(E[Z^{N_k}]\) of the random variable \(N_k, k = 0, 1, 2, \ldots\). Then by definition,

\[
P_k(z) = \frac{D_k(\theta z)}{D_k(\theta)}, \quad k = 0, 1, 2, \ldots \tag{8}
\]

\(P_k(z)\) can also be expressed recursively. With \(u = \theta z\), for \(k = 1, 2, 3, \ldots\), write

\[
P_k(z) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_s)_n}{(b_1)_n \cdots (b_t)_n} \frac{n^k u^n}{n!} D_k(\theta) = \frac{u \frac{d}{du} \left(\sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_s)_n}{(b_1)_n \cdots (b_t)_n} \frac{n^k u^n}{n!}\right)}{D_k(\theta)}
\]

From (5) and (9) it therefore follows that

\[
P_k(z) = \frac{u \frac{d}{du} D_{k-1}(u)}{\theta \frac{d}{d\theta} D_{k-1}(\theta)} = \frac{T_k[D_0(u)]}{T_k[D_0(\theta)]} \bigg|_{u=\theta z}, \quad k = 1, 2, 3, \ldots \tag{10}
\]

Equations (8) and (10) also immediately gives the m.g.f. \(M_k(t) = P_k(e^t), k = 0, 1, 2, \ldots\).

3. A Family of Recursive Power-Series Distributions

We now present five families of recursive power-series random variables characterized by (6) and (7). These extensions of some standard distributions have apparently not been studied and do not appear, for example, in Patil (1985).

Case 1: Recursive Poisson family. Let \(s = t = 1 \) and \(a_1 = b_1\) in Theorem 1 to give \(\text{e}_1 F_1(a_1; a_1; \theta) = e^\theta\). Then (6) and (7) become for \(\theta > 0\)

\[
p_0(n) = \frac{e^{-\theta} \theta^n}{n!}, \quad n = 0, 1, 2, \ldots ,
\]

\[
p_k(n) = \frac{n^k e^{-\theta} \theta^n}{\sum_{i=1}^{k} \sum_{j=1}^{i} \frac{(-1)^{i+j}}{i^j} (j) j^k \theta^i}, \quad n, k = 1, 2, 3, \ldots
\]
Each X_k, $k = 0, 1, 2, \cdots$, is said to have a recursive Poisson distribution with exponential parameter k (referring to its being an exponent of n). As special cases, X_0 and X_1 have standard Poisson distributions.

Case 2: Recursive geometric family. Next let $s = 2, t = 1$ and $a_1 = 1, a_2 = 1$, and $b_1 = 1$. Immediately, $\sum_F (1, 1; 1; \theta) = (1 - \theta)^{-1}$, $0 < \theta < 1$. Hence for $0 < \theta < 1$

$$p_0(n) = \theta^n(1 - \theta), \quad n = 0, 1, 2, \ldots,$$

$$p_k(n) = \frac{n^k\theta^n(1 - \theta)}{\sum_{i=1}^{k} \sum_{j=1}^{i} (-1)^{i+j} \frac{(i)}{j} j^k \left(\frac{\theta}{1 - \theta} \right)^i}, \quad n, k = 1, 2, 3, \ldots.$$

Then X_k, $k = 0, 1, 2, \cdots$, is said to have a recursive geometric distribution with exponential parameter k. Obviously X_0 has a standard geometric distribution.

Case 3: Recursive negative binomial family. Now let $s = 1, t = 0$ and $a_1 = r$ for a positive integer r. It readily follows that $\sum_F (0, r; -; \theta) = (1 - \theta)^{-r}$, $0 < \theta < 1$. As before, for $0 < \theta < 1$

$$p_0(n) = \binom{n + r - 1}{n} \theta^n(1 - \theta)^r, \quad n = 0, 1, 2, \ldots,$$

$$p_k(n) = \frac{(n + r - 1)^k \theta^n(1 - \theta)^r}{\sum_{i=1}^{k} \sum_{j=1}^{i} (-1)^{i+j} \frac{(i+j-1)}{i} \frac{(i)}{j} j^k \left(\frac{\theta}{1 - \theta} \right)^i}, \quad n, k = 1, 2, 3, \ldots.$$

Here X_k, $k = 0, 1, 2, \cdots$, is said to have a recursive negative binomial distribution with exponential parameter k. X_0 and X_1 have standard negative binomial distributions with parameters r and $r + 1$, respectively.

Case 4: Recursive log-series family. For $s = 2, t = 1$, $a_1 = a_2 = 1$, and $b_1 = 2$, it can be shown that $\sum_F (1, 1; 2; \theta) = \theta^{-1}\{\log(1 - \theta)\}, |\theta| < 1$. Hence for $|\theta| < 1$

$$p_0(n) = \frac{-\theta^{n+1}}{(n+1)\log(1 - \theta)}, \quad n = 0, 1, 2, \ldots,$$

$$p_k(n) = \frac{n^k\theta^{n+1}}{\sum_{i=1}^{k} \sum_{j=1}^{i} (-1)^{i+j} \frac{(i)}{j} j^k \left(\log(1 - \theta)^{-1} + \sum_{p=1}^{i} \frac{(-1)^p}{p} \left(\frac{1}{(1-\theta)^p} - 1 \right) \right)}, \quad n, k = 1, 2, 3, \ldots.$$

In this case, X_k, $k = 0, 1, 2, \cdots$, is said to have a recursive log-series distribution with exponential parameter k, where X_0 has a standard log-series distribution.
Case 5: Recursive generalized Waring family. When $s = 2$, $t = 1$, a_1, a_2, b_1, $\theta = 1$, and $b_1 = a_1 + a_2 + \rho$, $2F_1(a_1, a_2; b_1; 1) = \frac{\Gamma(a_1 + a_2 + \rho)\Gamma(\rho)}{\Gamma(a_2 + \rho)\Gamma(a_1 + \rho)}$. Thus,

\[
p_0(n) = \frac{(a_1)_n(a_2)_n}{(a_1 + a_2 + \rho)_n} \frac{(\rho)_{a_2}}{(a_1 + \rho)_{a_2}} \frac{1}{n!}, \quad n = 0, 1, 2, \ldots ,
\]

\[
p_k(n) = \sum_{i=1}^{k} \sum_{j=1}^{i} \frac{(a_1)_i(a_2)_j}{(a_1+a_2+\rho)_n} \frac{(-1)^{i-j}}{i!} \left(\frac{j}{\rho+1}\right)^k \frac{(a_2+\rho)(a_1+i)}{(\rho+2)(a_1-i)}, \quad n, k = 1, 2, 3, \ldots .
\]

Now X_k, $k = 0, 1, 2, \ldots$, is said to have a recursive generalized Waring distribution with exponential parameter k. In particular, X_0 has a standard generalized Waring distribution, with details found in Irwin (1963, 1975).

Figures 1-5 illustrate the p.m.f.’s of Cases 1-5 for $k = 1, 4, 7, 10$ and the given parameters. Note that each p.m.f tends toward a bell shape reminiscent of the binomial distribution’s relation to the Bernoulli for fixed p, a consequence of the central limit theorem. Hence, it is possible that N_k for the general recursive power-series distribution is a sum of k independent, identically distributed random variables. However, this conjecture remains unproved.

[Figures 1-5 about here]

4. Conclusions

We have presented here new discrete distributions derived from the generalized hypergeometric function. For fixed parameters, these distributions can be viewed as a family of recursive power-series distributions over $k = 0, 1, 2, \ldots$, with the p.g.f. and m.g.f. defined recursively on k. We gave examples where such families extend some standard distributions. Future work should include the estimation of θ, which is difficult in general, and establishing whether N_k for each family is a sum of k independent, identically distributed random variables. In addition, values of the parameters in (6) and (7) should be determined that give further families – in particular, new distributions that are not extensions of standard ones. Finally, applications of specific cases of our recursive power-series distributions should be identified.
References

Schwatt, I.J. (1962), *An Introduction to the Operations with Series* (Chelsea Publications, New York, 2nd ed.).

Figure 1: Probability mass function of the recursive Poisson distributions with $\theta = 1$ for $k = 1, 4, 7, 10$.
Figure 2: Probability mass function of the recursive geometric distributions with $\theta = 0.3$ for $k = 1, 4, 7, 10$.
Figure 3: Probability mass function of the recursive negative binomial distributions with $r = 5$ and $\theta = 0.3$ for $k = 1, 4, 7, 10$.
Figure 4: Probability mass function of the recursive log-series distributions with $\theta = 0.3$ for $k = 1, 4, 7, 10$.

Figure 5: Probability mass function of the recursive Waring distributions with $a_1 = 2, a_2 = 3$, and $b_1 = 40$ for $k = 1, 4, 7, 10$.
DERIVATIONS IN SECTION 3 FOR REFEREES

Recursive Poisson family.

\[1F_1(a_1 + i; a_1 + i; \theta) = \sum_{n=0}^{\infty} \frac{(a_1 + i)_n \theta^n}{(a_1 + i)_n n} \]
\[= \sum_{n=0}^{\infty} \frac{\theta^n}{n} \]
\[= e^\theta. \]

Recursive geometric family.

\[2F_1(1 + i, 1 + i; 1 + i; \theta) = \sum_{n=0}^{\infty} \frac{(1 + i)_n(1 + i)_n \theta^n}{(1 + i)_n n} \]
\[= \sum_{n=0}^{\infty} \frac{(i+n)!}{n!} \frac{\theta^n}{n!} \]
\[= \frac{1}{i!} \sum_{n=0}^{\infty} \frac{(i+n)!}{n!} \theta^n \]
\[= \frac{1}{i!} \frac{i!}{(1 - \theta)^{i+1}} \]
\[= (1 - \theta)^{-(i+1)}. \]

Recursive negative binomial family.

\[1F_0(r + i; -; \theta) = \sum_{n=0}^{\infty} \frac{(r + i)_n \theta^n}{n!} \]
\[= (1 - \theta)^{-(r+i)}. \]
Recursive log-series family.

$$2F_1(1+i, 1+i; 2+i; \theta) = \sum_{n=0}^{\infty} \frac{(1+i)_n(1+i)_n \theta^n}{(2+i)_n n!}$$

$$= \sum_{n=0}^{\infty} \frac{(i+1)_{i+n}! \theta^n}{i+n+1 n!}$$

$$= \frac{i+1}{i!} \sum_{n=0}^{\infty} \frac{(i+n)! \theta^n}{n! i + n + 1}$$

$$= \frac{i+1}{i!} \frac{1}{\theta^{i+1}} \sum_{n=0}^{\infty} \frac{(i+n)! \theta^{n+i+1}}{n! n + i + 1}$$

$$= \frac{i+1}{i!} \frac{1}{\theta^{i+1}} \int_0^\theta t^{n+i} dt$$

$$= \frac{i+1}{i!} \frac{1}{\theta^{i+1}} \int_0^\theta t^i \frac{t^n}{(1-t)^{i+1}} dt$$

Let $w = 1-t, \ dw = -dt$

$$= -\left(\frac{i+1}{\theta^{i+1}}\right) \int_1^{1-\theta} \frac{(1-w)^i}{w^{i+1}} dw$$

$$= -\left(\frac{i+1}{\theta^{i+1}}\right) \int_1^{1-\theta} \sum_{p=0}^{i} \frac{(i)}{p} \frac{(-1)^{i-p}}{w^{i+1}} dw$$

$$= -\left(\frac{i+1}{\theta^{i+1}}\right) \int_1^{1-\theta} \sum_{p=0}^{i} \frac{(i)}{p} \frac{(-1)^{i-p}}{w^{i+1}} dw$$

$$= \left(\frac{i+1}{\theta^{i+1}}\right) (-1)^i \int_1^{1-\theta} \sum_{p=0}^{i} \frac{(i)}{p} \frac{1}{(-w)^{i+1}} dw$$

By integrating a finite sum, we obtained as follows:

$$2F_1(1+i, 1+i; 2+i; \theta) = \left(\frac{i+1}{\theta^{i+1}}\right) (-1)^i \left[\log(1-\theta)^{-1} + \sum_{p=1}^{i} \frac{(-1)^p}{p} \left(\frac{1}{(1-\theta)^p} - 1 \right) \right]$$

□
Recursive generalized Waring family.

\[_2F_1(a_1 + i, a_2 + i; b_1 + i; 1) = \frac{\Gamma(b_1 + i)\Gamma(b_1 - a_1 - a_2 - i)}{\Gamma(b_1 - a_1)\Gamma(b_1 - a_2)} \]
\[= \frac{\Gamma(a_1 + a_2 + \rho + i)\Gamma(\rho + i)}{\Gamma(a_2 + \rho)\Gamma(a_1 + \rho)} \]
\[= \frac{(a_1 + a_2 + \rho + i - 1)!(\rho + i - 1)!}{(a_2 + \rho - 1)!(a_1 + \rho - 1)!} \]
\[= \frac{(a_2 + \rho)^{(a_1+i)}}{(\rho+i)(a_1-i)}. \]

□