Why Pursue a Graduate Degree at UTA?
No profession unleashes the spirit of innovation like engineering. From flight to alternative energy, faculty and students in our aerospace and mechanical engineering programs constantly discover how to improve lives by creating bold new solutions that connect science to life in unexpected, forward-thinking ways. Emboldened by the direct and positive effect we have on people's everyday lives we channel our imagination and creativity to meet the needs and challenges of the 21st century. Join us in an exciting journey of discovery, innovation and leadership as you become the next UTA engineer to make a mark on history!

An Impactful Research University
The University of Texas at Arlington is rising in stature through its commitment to transforming the lives of students and pushing the boundaries of knowledge. Dramatic, measurable advancements continue to propel the University toward its goal of becoming one of the nation’s premier research institutions.

UTA is designated an R-1 Carnegie “highest research activity” institution. Research activity at the university has more than tripled to more than $85 million over the past 10 years, with increasing expertise in bioengineering, medical diagnostics, micro-manufacturing, and defense and Homeland Security technologies, among other areas. With a projected total global enrollment of close to 57,000 students, UTA is one of the largest universities in Texas. UTA is a first-choice university for students seeking a vibrant college experience. In addition to receiving a first-rate education, our students participate in a multitude of activities that prepare them to become the next generation of leaders.

Learn More
For more information about the Mechanical and Aerospace Engineering Department, visit our website at uta.engineering/ae or uta.engineering/me or contact the graduate advisor:

Atilla Dogan, Ph.D. Seiichi Nomura, Ph.D.
Mechanical Aerospace
817-272-2500 817-272-2500
dogan@uta.edu nomura@uta.edu

Degrees
• Ph.D. in Aerospace Engineering
• Ph.D. in Mechanical Engineering
• M.S. and M.Eng. in Aerospace Engineering
• M.S. and M.Eng. in Mechanical Engineering

Student Composition and Diversity
U.S. News and World Report rated UTA as the 5th-most diverse university in the United States in 2017. The University is an Hispanic-serving institution and is one of the 40 most popular U.S. colleges and universities for international students, based on data from the Institute of International Education’s 2014-15 Open Doors Report.

How to Apply
Begin your application for graduate admission today at uta.edu/admissions/graduate/apply.
Please be sure to check application deadlines and include all of the required application materials and fees.

Financial Assistance
All applications for admission will be also be considered for assistantships, fellowships, and scholarships. Complete your application early to take advantage of all opportunities for financial aid.

Who Hires Our Graduates?
Graduates of the department work at many companies in the region and around the nation, including Lockheed Martin, Bell Helicopter Textron, Facebook, Yahoo, Boeing, General Motors, and many others.

An Ideal Location
UTA is located in the heart of the Dallas/Fort Worth Metroplex, the fourth-largest metropolitan area in the United States. Arlington is located between the cities of Dallas and Fort Worth and is a center for sporting events, tourism and manufacturing. The Metroplex has one of the highest concentrations of corporate headquarters in the United States, with corporations such as Texas Instruments, AT&T, Ericsson, Lockheed Martin, Bell Helicopter Textron, Jacobs Engineering, and many more. Also, just minutes from campus, DFW International Airport and several interstate highways allow easy access to global collaboration and commerce.
Aerospace Research Center

The ARC features five large-scale wind tunnels (arc, jet, low-speed, transonic, supersonic, and hypersonic). Other features include a machine shop, an electronics room, office space for 15 students, and a separated compressor building. The facility is being renovated to house Luca Maddalena’s arc-heated hypersonic testing facility.

Electronic MEMS and Nanoelectronics Systems Packaging Center

The EMNCP is a first-class center meeting the needs of industry through research, education, and training, with a focus on microelectronics, MEMS and nanoelectronics (with a special emphasis on thermomechanical issues) as a fundamental research area.

State-of-the-Art Research Facilities

Advanced Materials and Structures Lab

The Advanced Materials and Structures Lab features state-of-the-art facilities and equipment that enable a fundamental shift from traditional trial and error experimentation loops and empiricism in the design of composite materials and structures, to efficient diagnostics and prognosis methods.

Aerospace Research Center

Andrew Makeev received a $181,000 grant from the Office of Naval Research to purchase an ARES-G2 integrated axial-torsional platform that will allow him to develop the Advanced Materials and Structures Lab to better understand material properties.

Hyeing Huang’s current research projects include using sensors for smart medical devices, high-temperature monitoring, simultaneous strain and temperature measurement, ultrasound/acoustic emissions and 3-D surface profiling for material damage diagnosis and prognosis.

Ankur Jain was awarded a $500,000 National Science Foundation CAREER grant to develop a fundamental understanding of how flow fields within a Li-ion battery.

Hyeing Moon is using a $400,000 National Science Foundation CAREER grant to support her work with microfluidic devices, which promise to improve 3D tissue and cell sample analyses.

Luca Maddalena was awarded a $1.01 million Defense University Research Instrumentation Program grant to build the country’s only university-based, arc-heated, hypersonic-testing facility for thermal protection systems.