Factors Affecting Gas Exchange at the Lung

The PAO2 defines the upper limit to PaO2

Factors that affect the “A-a” difference:

1. **Shunt**
 - in newborns, patent ductus arteriosus or foramen ovale
 - in adults, pathology
2. **Diffusion Limitation**
 - particularly during exercise in horses, but also in some people
3. **V-Q inequality – mismatch of perfusion and ventilation**
 - can be caused by disease
 - worsens during intense exercise even in healthy people

Right to Left Shunt

- Deoxygenated blood “leaks” through the shunt from the right side to the left (systemic) side.
- Normal: bronchial supply for larger airways, can account for up to 4 mmHg reduction in PaO2.
- Abnormal: Can occur through a patent ductus arteriosus or septal defect (for examples)
- Rare in adults
- Causes dilution of oxygenated blood, lowers PaO2
- Clinically diagnosed by 100% O2 breathing
Diffusion Limitation

- Equilibrium between PAO2 and PaO2 is not reached
- DOES NOT AFFECT PaCO2 (Why?)
- Can be caused by any factor that affects diffusion
 - BGB area or thickness (loss of lung due to surgery, etc.)
 - Pressure gradient (altitude)
- Can occur during exercise due to reduced time for diffusion
 - Capillary transit time may decrease from ~0.75 sec to only 0.25 sec
 - Extreme case in race horses – PaO2 drops to 50’s or 60’s, A-a difference is 40-50 mmHg!
 - Can occur in humans, particularly in elite athletes with very high cardiac output

Ventilation/Perfusion Matching

- Review: Pulmonary circuit
 - Same rate of flow (L/min) as systemic circuit
 - Cardiac output systemic = Cardiac output pulmonary
 - Minute ventilation, also measured in L/min
- When standing, most of the blood flow is to the base of the lung
 - Due to gravitational force

Ventilation-Perfusion Relationships

- Ventilation/perfusion ratio
 - Indicates matching of blood flow to ventilation
 - Ideal: ~1.0
- Base
 - Overperfused (ratio <1.0)
 - Extreme case – ratio near 0 - perfusion with no ventilation
 - physiological shunt, as with collapsed alveoli or severe pulmonary edema
- Apex
 - Underperfused (ratio >1.0)
 - Extreme case – ratio near infinity – ventilation with no perfusion, as with blocked or collapsed blood vessel
EXERCISE: Rest-to-Work Transitions

- Initially, ventilation increases rapidly
 - Then, a slower rise toward steady-state
- Both tidal volume and respiratory rate increase
 - At low intensities tidal volume changes more
- PO₂ and PCO₂ are maintained (homeostatically regulated parameters)
Ventilation during Exercise:
Intensity Effects

- Linear increase in ventilation with intensity up to ~55-75% of VO₂max
 - VE and VO₂ are matched – rise in parallel
- Ventilation increases exponentially beyond this point
 - VE and VO₂ become unmatched – VE increases faster than VO₂
- Ventilatory threshold (Tvent) or breakpoint
 - Inflection point where V̇E parts with VO₂ and begins to increase exponentially

VO₂ and VE versus Intensity

![Graph showing VO₂ and VE versus Intensity](image)

Data Based on Hopkins et al. 1998

Respiration During Exercise in a Hot Environment

During prolonged submaximal exercise:

- Ventilation tends to drift upward
- In panting animals, VE increases rapidly to increase respiratory evaporative heat loss
- PaCO₂ tends to fall, slightly in humans, more rapidly and more extremely in panting animals
- Higher ventilation in heat is strongly related to thermoregulation in panting animals, is probably also related in humans
PaCO₂ during 30 min at ~50% VO₂max in sheep

Body Temperature and PaCO₂ During Exercise

<table>
<thead>
<tr>
<th>Body Temp (°C)</th>
<th>PaCO₂ (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
</tr>
</tbody>
</table>

Minutes of Exercise

Changes in V_E and PaCO₂ During Exercise in a Hot/Humid Environment

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>V_E (L/min)</th>
<th>PaCO₂ (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>39</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Exercise time (min)

Ventilatory Response to Exercise: Trained vs. Untrained

- VE is lower at any given intensity below the ventilatory threshold
 - Mechanism not known, but parallels lower VO₂ at any given submaximal intensity
- Ventilatory threshold occurs at a higher work rate
- pH maintained at a higher work rate, i.e., higher lactate threshold, better buffering (tighter homeostasis)
- In elite athletes, particularly women, there may be a drop in PaO₂ with high intensity exercise
 - Due mainly to V/Q inequality, diffusion limitation, relative hypoventilation (especially in older people, women)
More extreme
Than usual
(horse like)

Effects of Endurance Training on Ventilation During Exercise

Respiration during Exercise:
Locomotor-Respiratory Coupling

- Coupling is characterized by an integer ratio between respiratory rate and step rate, e.g. 1:1 or 2:1 (breathes:strides)
- Coupling is characterized by “phase lock” – inspiration occurs during specific part of the stride
- 1:1 coupling is the rule in galloping dogs, horses, etc.
- Coupling is found during running and flight in birds
- Coupling of 1:1, 2:1 and other ratios is found in humans on bikes, running, and of course swimming
- Coupling is more common in trained than untrained humans
Control of Ventilation

- Respiratory control center
 - Located in the medulla (part of brainstem)
 - Inspiratory and expiratory neurons
- Receives neural and humoral input
 - Neural input from motor cortex, other “higher” centers
 - Neural input from respiratory neurons in pons
 - Neural (GTO, spindles) and humoral feedback from muscles
 - Humoral feedback from central and peripheral chemoreceptors

Location of the Brain Stem
Respiratory Control Centers

Chemoreceptors

- Peripheral chemoreceptors
 - Aortic arch chemoreceptor
 - Carotid bodies
 - Carotid sinus nerve carries messages
 - Detect PaO₂, PaCO₂, H⁺, and K⁺ in arterial blood
- Central chemoreceptors
 - Located in the medulla
 - PCO₂ and H⁺ concentration in cerebrospinal fluid
Effect of Increasing PaCO_2 on Minute Ventilation

Effect of Decreasing PaO_2 on Minute Ventilation

Ventilatory Control During Exercise

- At exercise onset, VE increases immediately
 - Due to feedforward control?
 - Neural feedback from muscles
 - After a few seconds, humoral feedback

- Incremental submaximal exercise
 - Linear increase in ventilation with intensity due to:
 - Central command (motor cortex, "higher" centers)
 - Humoral feedback from chemoreceptors
 - Neural feedback

- Heavy exercise
 - Exponential rise above ventilatory breakpoint
 - Increasing blood H^+
 - Increasing body temperature
Ventilatory Control During Submaximal Exercise

Do the Lungs Limit Exercise Performance?

- Submaximal exercise
 - Pulmonary system not seen as a limitation

- Maximal exercise
 - Not thought to be a limitation in healthy individuals at sea level
 - May be limiting in elite endurance athletes
 - Flow limitations in older people due to increased lung compliance
 - Flow and diffusion limitations in women due to smaller lungs than men of same body size