Chapters 13, 21 (pp. 427-430)

The Physiology of Endurance Training
Training for Performance

Aerobic Performance

- To improve endurance performance the athlete must work SPECIFIC muscles or organ systems at an INCREASED RESISTANCE
- Training principles
 - Specificity of training
 - Muscles
 - Energy system – primary source of ATP
 - Progressive overload – adaptation
 - Continue to increase capacity in response to training load
 - Reversibility (detraining)
 - The training effect lost when training is stopped

Training Principles

- Intensity
 - 60-90% max HR
 - Age predicted
- Duration
- Frequency

Training to Improve Aerobic Power

- Three primary methods
 - Interval training
 - Long, slow distance
 - High-intensity, continuous exercise
- Intensity appears to be the most important factor in improving VO\textsubscript{2max}

Interval Training

- Advantage
 - Perform larger amounts of high-intensity exercise in short time
- Overload
 - Increase the number of exercise intervals
 - Increase the intensity of the work interval

Interval Training Session

- Length of the work interval
 - Longer than 60 s
- Intensity of the effort
 - 85-100% HRmax
- Duration of the rest interval – time between work bouts
 - Light activity-walking
 - Expressed as a ratio to the work interval
Long, Slow Distance
- Low intensity exercise
 - 60% VO_{2max} or 70% HR_{max}
- Duration greater than expected in competition
- Based on the idea that training improvements are proportional to the volume of training
- Short term, high intensity exercise now found to be superior to long term, low intensity

High Intensity, Continuous Exercise
- Excellent method for improving
 - VO_{2max}
 - Lactate threshold
- Intensity 80-90% VO_{2max}
- Determine HR at lactate threshold
 - Train at or slightly above that level
- Duration of 25-50 min
 - Depends on individual fitness level

Training Intensity and Improvement in VO_{2max}

![Graph showing improvement in VO_{2max} vs. training intensity](image)

Training Principles
- Intensity
 - 60-90% HR_{max}
 - 50-85% VO_{2max}
- Frequency
 - 4 to 6 days/week
- Duration
 - 25 min – fast, with 5 min slow work intermittently
 - >30 min if slow, continuous

Influences on Training
- Men and women respond similarly to training programs
- Training improvement is always greater in individuals with lower initial fitness
- Genetics plays an important role in how an individual responds to training

Aerobic Training-Muscle
- Skeletal muscle adaptations
 - Muscle fiber type
 - Reliance primarily on ST fibers
 - 7 to 22% increase in size
 - Fiber size varies considerably in athletes
 - Little relationship between muscle fiber sizes in endurance athletes and aerobic capacity
Aerobic Training-Muscle

- Muscle fiber type
 - Size probably more critical in anaerobic events
 - Type 2b take on characteristics of Type 2a

- Capillary supply
 - Increase in the number of capillaries surrounding each muscle fiber
 - 5 to 10% more capillaries in trained vs untrained
 - 15% increase when sedentary trained
 - Decreased peripheral resistance

- Capillary supply
 - Greater exchange of gases, heat, nutrients and waste
 - Changes occur in first few weeks

- Myoglobin content
 - Stores oxygen and releases it to mito when needed
 - Increases 75-80% with training

- Oxidation of glycogen
 - Aerobic glycolysis

Skeletal Muscle Enzymes

<table>
<thead>
<tr>
<th>Table 8.2</th>
<th>Selected Muscle Enzyme Activities (umol - g(^{-1}) - min(^{-1})) for Untrained, Aerobically Trained, and Aerobically Trained Men</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Untrained</td>
</tr>
<tr>
<td>Aerobic enzymes</td>
<td></td>
</tr>
<tr>
<td>Oxidative system</td>
<td></td>
</tr>
<tr>
<td>Succinate dehydrogenase</td>
<td>8.1</td>
</tr>
<tr>
<td>Malate dehydrogenase</td>
<td>46.5</td>
</tr>
<tr>
<td>Carnitine palmitoyl transferase</td>
<td>1.5</td>
</tr>
<tr>
<td>Aerobic enzymes</td>
<td></td>
</tr>
<tr>
<td>ATP-PC system</td>
<td></td>
</tr>
<tr>
<td>Creatine kinase</td>
<td>609.0</td>
</tr>
<tr>
<td>Myokinase</td>
<td>309.0</td>
</tr>
<tr>
<td>Glycolytic system</td>
<td></td>
</tr>
<tr>
<td>Phosphorylase</td>
<td>6.3</td>
</tr>
<tr>
<td>Phosphofructokinase</td>
<td>19.9</td>
</tr>
<tr>
<td>Lactate dehydrogenase</td>
<td>786.0</td>
</tr>
</tbody>
</table>

Note: Enter significant differences from the untrained value.

Aerobic Training-CV

- Rest
 - Cardiac hypertrophy
 - Increased LV cavity
 - Increased EDV, smaller ESV, greater EF

Differences in:
(a) and diastolic volume (EDV),
(b) and end systolic volume (ESV), and
Aerobic Training-Rest

- Cardiac hypertrophy
 - Increased contractility of heart
 - Increase in release and transport of Ca++ from SR
 - High correlation between heart size and SV

- Decreased heart rate
 - Bradycardia
 - Increase in vagal tone-PS innervation
 - Decrease sympathetic tone
 - Combination of Sym decrease and PS increase

- Decreased HR
 - Intrinsic rate of SA node

- Increased levels of ACH found in atria following endurance training
- Decreased sensitivity to circulating catecholamines
- Changes in cardiac dimensions altering mechanical effects (wall thickness)

- Lung Volumes
 - Little change with training
 - Increased capillary density and hypertrophy of skeletal muscle
 - Increased blood volume

- Increase in SV at rest
 - Increased contractility
 - Decreased HR-
 - Longer filling time, greater stretch

- Plasma Volume
 - Contributes to ↑ SV

- Hematocrit
 - ↓ due to PV expansion

- Hb
 - Doesn’t usually change
Aerobic Training-Rest

- Plasma volume reduction with acute exercise
- Plasma volume expansion with chronic exercise
 - Increased release of ADH and aldosterone
 - Causes kidneys to retain water
 - Increased plasma protein content
 - Increases osmotic pressure

Aerobic Training-Exercise

- Submax
- Max
- Little or no change
- Significant increase
 - Mechanical efficiency increase
 - Less wasted motion
 - \(Q \) and \(a-V_O_2 \) diff

- Submax
- Max
- Little or no change
 - Increase due to SV
 - May be due to \(a-V_O_2 \)

- Submax
- Max
- Little or no change
 - \(Sym \) tone
 - \(PS \) tone
 - \(circ \) NE, E
 - \(SV \)
 - \(Sym \) drive
 - Intrinsic SA rate
Aerobic Training

- Exercise
 - Submax
 - ↑ capillarization
 - ↑ a-vO₂ diff
 - Max
 - ↑ mito adaptations
 - ↑ cap density
 - ↑ myoglobin
 - vasodilation

Greater pulmonary diffusion
- Lung volumes
 - Increased Vₑ at max (15 to 25%) with training
 - TV
 - R

VO₂ max = 52 ml/kg/mi
- 2 years of training
- VO₂ max = 71 ml/kg/mi
- Races at 75%
- 2 more years
- VO₂ max = 71 ml/kg/mi
- Races at 88%

How much will VO₂ max increase?
- Literature reports 4 – 93%
- Low initial values-large increase
 - Ekblom, 1969
 - 2 to 3 years of training
 - 44% increase (45 to 65 ml/kg/min)

How much will VO₂ max increase?
- High values-small increase
 - 16% increase (2 to 3 months)
 - 44 to 51 ml/kg/min
- On average 15 to 20% increase training at 75% VO₂ max for 6 months
- VO₂ max = Q x a-vO₂ diff
 - Central vs peripheral changes
Maximal Oxygen Consumption

- How does VO$_{2\text{max}}$ increase?
 - Or
 - What are the changes in the CV system that permit an increase in VO$_{2\text{max}}$?
 - VO$_{2\text{max}}$ = Q x a-VO$_2$ diff
 - Central and peripheral adaptations

Maximal Oxygen Consumption

- Wilmore et al. 1976
 - Sedentary, trained 2 or 3 months
 - VO$_{2\text{max}}$ increased by 16%
 - 8% increase in maximal cardiac output
 - Entirely to increased SV
 - 8% increase in a-VO$_2$ difference

Maximal Oxygen Consumption

- Ekblom et al. 1968
 - Training >2 years
 - VO$_{2\text{max}}$ increased 40%
 - 32% increase in SV
 - 8% increase in a-VO$_2$ difference

Maximal Oxygen Consumption

- Conclusions
 - Central and peripheral adjustments to physical conditioning are a function of:
 - Age
 - Initial level of VO$_{2\text{max}}$
 - Mass of the muscle(s) conditioned
 - On average 15 to 20% increase training at 75% VO$_{2\text{max}}$ for 6 months

- High VO$_{2\text{max}}$ values—how much do they increase?
 - Little change after years of intense conditioning
 - Genetically predetermined?
 - Dependent on activity during childhood?
- Range (30 ml/kg/min to 85 ml/kg/min)
 - Range of adaptation small
Symptoms of Overtraining

- Decrease in performance
- Loss of body weight
- Increased number of infections
- Chronic fatigue
- Psychological stress
- Elevated heart rate and blood lactate levels during exercise