Chapter 3

Recovery From Exercise

Rest to Exercise Transition
- Exercise metabolism
 - Energy expenditure may increase 15 to 25 x’s rest
 - Provides ATP for contracting skeletal muscles
- Energy utilization may increase 200 times
- Large capacity to produce and use ATP

Rest to Exercise Transition
- Step onto a treadmill at 6 mph
 - In one step muscles increase ATP production
 - What metabolic changes occur?
- From rest to light or moderate exercise
 - Oxygen consumption increases rapidly
 - Steady state reached in 1 to 4 minutes

Rest to Exercise Transition
- Slow adjustment to steady state VO2
 - Suggests anaerobic pathways contribute
- Lag in oxygen uptake at beginning
 - Oxygen deficit
- Steady state
 - ATP requirement met through aerobic ATP production

O2 deficit - difference between the oxygen required and the oxygen consumed

Oxygen Deficit
- Inadequate oxygen consumption during exercise
 - Resulted in oxygen deficit
 - Body borrowed on its energy reserves
 - Extra oxygen consumed (above rest) during recovery-oxygen debt
- Oxygen debt was then used as a measure of anaerobic metabolism during exercise
 - Inadequate for estimating anaerobic metabolism during exercise
Rest to Exercise Transition

- Research suggests
 - ATP-PC system is first active bioenergetic pathway
 - Then anaerobic glycolysis
 - Finally aerobic energy production

- Point
 - Several energy systems are involved and energy produced is by a mixture (overlapping) of metabolic systems

Oxygen Deficit

- Why is the aerobic system activated so slowly
 - Theory 1
 - Inadequate oxygen molecules in mitochondria
 - Oxygen can’t accept electrons in ETC – H₂O
 - If true, then oxygen molecules low in whole body
 - Theory 2
 - Delay due to lack of precursors
 - ETC stimulated by ADP and Pi-low at rest
 - Exercise increases ADP and Pi-stimulates Aerobic
 - “inertia of metabolism”

Oxygen Deficit

- Size
 - Trained vs untrained
 - Trained-lower deficit
 - Better aerobic system
 - Mito adaptations

Recovery from Exercise

- Extra oxygen consumption with recovery
 - "O₂ debt" – so named by A.V. Hill (1923)
- Misconceptions
 - Oxygen debt that needs to be repaid (anaerobic metabolism)
 - Lactic acid is a “dead-end metabolite” that is formed but not removed during exercise
 - Elevated blood La represents oxygen insufficiency in muscle

Recovery from Exercise

- Initially,
 - VO₂ decreased rapidly
 - Bl La did not
- Then
 - VO₂ declined slowly
 - Bl La decreased rapidly
- Fast and slow components

Oxygen Recovery
Recovery from Exercise

- Metabolism remains elevated following exercise
- Magnitude and duration influenced by intensity

Recovery from Exercise

- Fast component
 - Steep decline in oxygen uptake
 - 2 to 3 min
- Slow component
 - Slow decline in oxygen uptake
 - 30 min or longer

Recovery from Exercise

- Traditional view
- Fast
 - Resynthesize stored ATP/PC
 - Replace stores of oxygen
 - 20%
- Slow
 - Oxidative conversion of La to glucose-gluconeogenesis
 - 80%

Fast Component

- Elevated oxygen consumption during
- Alactacid (fast)
 - 1. Replenishment of ATP-PC
 - 2. Resaturation of myoglobin with oxygen
 - 500 mL
 - Important in intermittent exercise
 - 3. Restoration of blood levels of oxygen
 - 4. Energy cost of ventilation
 - 5. Increased heart rate

1. Replenishment of Phosphagens

1. Replenishment of Phosphagens
2. Resaturation of myoglobin

- Myoglobin
 - Transports oxygen
 - Stores oxygen in the muscle
 - 500 mL-provide energy for 2 minutes of resting metabolism
- Figure 3.15
 - 20% of the total energy required from myoglobin stores during 1 h intermittent exercise
- Gradient
 - Capillary → myoglobin → mitochondria

3. Restoration of blood levels

- Body stores 2 L of oxygen
- Lungs
 - 0.25-0.5 L
- Dissolved in body fluids
 - .25L
- Combined with Hb
 - 1 L
- Myoglobin
 - 0.25-0.5 L

Fast Component

- 4. Energy cost of ventilation and HR
 - Muscle contraction
- General Characteristics
 - Declines rapidly in recovery
 - Ranges between 2 and 3 L VO₂
 - 5 to 6 L VO₂ in trained athletes
 - Ranges from 2 to 6 minutes

Slow Component

- 1. Increased core temperature
 - Keeps metabolism elevated
- 2. Energy cost of increased ventilation and HR
 - Muscle contraction
- 3. Increased sodium/potassium pump activity
 - Ion redistribution
- 4. Metabolic effect of catecholamines
 - Elevated metabolic levels
- 5. Glycogen resynthesis
 - Continuous vs intermittent different-why?

6. Fate of Lactic Acid

- Lactate can go through different metabolic pathways
- Proximity is near TCA cycle
 - Gluconeogenic precursor < 10-20%
- Pathway depends on metabolic conditions
 - High La levels, plenty of glycogen
 - Oxidized in TCA cycle
 - Prolonged exercise-exhaustion
 - Glycogen depletion-hypoglycemia
 - gluconeogenesis

- Converted to amino acids – 10%
- Converted to glycogen – 20%
- Oxidized through TCA 60%
 - CO₂ and H₂O
 - Lactate shuttle
 - Type II to Type I
 - Transport through circulation-heart, liver, kidney
Cori Cycle: Lactate as a Fuel

- Lactate to glucose (muscle to liver)
- Gluconeogenesis occurs in liver

Removal of Lactic Acid

Slow Component

- General Characteristics
 - Declines slowly in recovery
 - Ranges from 5 to 10 L (may be as high as 14 L)
 - Larger in athletes in long sprints to 800 m
 - Ranges from 30 to 60 minutes
 - Reduction of LA in blood and muscle
 - Restoration of liver and muscle glycogen begins

Challenges to fast/slow

- Bike ergometer
- Similar intensities
- Varying durations
 - 1 to 3 min exercise
 - Exercise stops, but BI La increases
 - Reaches max during recovery

Fuel Selection

- Protein - < 2% (1 h)
 - 5-15%, 3 to 5 h
- Fat vs CHO
 - Diet
 - Intensity
 - Duration
- High fat diet promotes high rate of fat metabolism
- Low intensity-fat metabolism
- High intensity-CHO metabolism
Exercise Intensity

- Fats primary source
 - < 30% VO2max
- CHO primary source
 - > 70% VO2max
- "Crossover" point
- Causes
 - Recruitment Type II
 - Increasing blood levels of epinephrine

Exercise Duration

- Fat metabolism
 - Lipolysis breakdown
 - Triglycerides
 - FFA, glycerol
 - Lipases
 - Stimulated by EPI, NE
- Low level exercise
 - EPI rises in blood
 - Lipase activity increases
 - Lipolysis occurs

Exercise Duration

- Lipolysis increases blood, fat levels-FFA
- Slow process
- FFA mobilization
 - Inhibited by insulin
 - Inhibited by LA
- Insulin levels decrease in prolonged ex

Exercise Duration

- Consumption of high CHO meal/drink
 - 30-60 min before exercise
 - Increase in blood glucose
 - Increase in insulin levels
 - Decreased lipolysis and fat metabolism

Submax vs Max