Chapter 9: Circulatory Adaptations to Exercise

Introduction

• Exercise poses a major challenge to homeostasis due to increased muscular demand for oxygen
• During heavy exercise, oxygen demands may ↑ by 15 to 25 times
• Two major adjustments of blood flow are;
 – ↑ cardiac output
 – Redistribution of blood flow
• A thorough understanding of the cardiovascular system is essential to exercise physiology

Objectives

• Give an overview of the design and function of the circulatory system
• Describe cardiac cycle & associated electrical activity recorded via electrocardiogram
• Discuss the pattern of redistribution of blood flow during exercise
• Outline the circulatory responses to various types of exercise

Objectives

• Identify the factors that regulate local blood flow during exercise
• List & discuss those factors responsible for regulation of stroke volume during exercise
• Discuss the regulation of cardiac output during exercise

The Cardiovascular System

Purposes

1. Transport O₂ to tissues and removal of waste (CO₂)
2. Transport of nutrients to tissues
3. Regulation of body temperature

The Circulatory System

• Heart
 – Pumps blood
• Arteries and arterioles
 – Carry blood away from the heart
• Capillaries
 – Exchange of nutrients with tissues
• Veins and venules
 – Carry blood toward the heart
Structure of the Heart

Fig 9.1

Pulmonary and Systemic Circuits

Systemic circuit
- Left side of the heart
- Pumps oxygenated blood to the whole body via arteries
- Returns deoxygenated blood to the right heart via veins

Pulmonary circuit
- Right side of the heart
- Pumps deoxygenated blood to the lungs via pulmonary arteries
- Returns oxygenated blood to the left heart via pulmonary veins

The Myocardium

Fig 9.2

The Cardiac Cycle: alternating pattern

Systole
- Contraction phase

Diastole
- Relaxation phase

Arterial Blood Pressure

- Expressed as systolic/diastolic
 - Normal is 120/80 mmHg
 - High is ≥140/90 mmHg
- Systolic pressure (top number)
 - Pressure generated during ventricular contraction (systole)
- Diastolic pressure
 - Pressure in the arteries during cardiac relaxation (diastole)
Blood Pressure

- Pulse pressure
 - Difference between systolic and diastolic
 \[\text{Pulse Pressure} = \text{Systolic} - \text{Diastolic} \]
- Mean arterial pressure (MAP)
 - Average pressure in the arteries
 \[\text{MAP} = \text{Diastolic} + \frac{1}{3}(\text{pulse pressure}) \]

Mean Arterial Pressure

Blood pressure of 120/80 mm Hg

\[\text{MAP} = 80 \text{ mm Hg} + .33(120-80) \]
\[= 80 \text{ mm Hg} + 13 \]
\[= 93 \text{ mm Hg} \]

Measurement of B P

- Inflated cuff stops arterial blood flow
- Release of pressure, flow resumes
 - Systolic
 - Sound stops
 - Diastolic

Factors That Influence Arterial Blood Pressure

- Blood volume increases
- Heart rate increases
- Stroke volume increases
- Blood pressure increases
- Blood viscosity increases
- Peripheral resistance increases

Electrical Activity of the Heart

- Contraction of the heart depends on electrical stimulation of the myocardium
- Impulse is initiated in the right atrium and spreads throughout entire heart
- May be recorded on an electrocardiogram (ECG)
Electrocardiogram

- Records the electrical activity of the heart
- P-wave
 - Atrial depolarization
- QRS complex
 - Ventricular depolarization
- T-wave
 - Ventricular repolarization

Cardiac Cycle & ECG

Diagnostic Use of the ECG

- ECG abnormalities may indicate coronary heart disease
 - ST-segment depression can indicate myocardial ischemia

Abnormal ECG

Cardiac Output

The amount of blood pumped by the heart each minute
- Product of heart rate and stroke volume

\[Q = HR \times SV \]
- Heart rate (bt/min) = number of beats per minute
- Stroke volume (ml/bt) = amount of blood ejected in each beat
Regulation of Heart Rate

- Decrease in HR
 - Parasympathetic nervous system
 - Via vagus nerve
 - Slows HR by inhibiting SA node
- Increase in HR
 - Sympathetic nervous system
 - Via cardiac accelerator nerves
 - Increases HR by stimulating SA node

Regulation of Stroke Volume

- End-diastolic volume (EDV)
 - Volume of blood in the ventricles at the end of diastole ("preload")
- Average aortic blood pressure
 - Pressure the heart must pump against to eject blood ("afterload")
- Strength of the ventricular contraction
 - "Contractility"

End-Diastolic Volume (Preload)

- Frank-Starling mechanism
 - Greater preload results in stretch of ventricles and in a more forceful contraction
- Affected by:
 - Venoconstriction
 - Skeletal muscle pump
 - Respiratory pump

End-Diastolic Volume (Preload)

- Venoconstriction
 - Increases venous return by reducing volume of blood in veins
 - Moves blood back towards heart

- The Skeletal Muscle Pump
 - Rhythmic skeletal muscle contractions force blood in the extremities toward the heart
 - One-way valves in veins prevent backflow of blood
End-Diastolic Volume

- Respiratory pump
 - Rhythmic pattern of breathing (mechanical pump)
 - Inspiration-decreases pressure in thorax
 - Venous flow increases-increases VR
 - Expiration-increased pressure in thorax
 - Slows venous flow

Average Aortic Pressure

- Afterload
 - Affects size of stroke volume
 - Pressure generated by LV to exceed pressure in aorta
 - Afterload-barrier to ejection of blood from ventricles and is determined by average aortic pressure

Average Aortic Pressure

- Aortic pressure is inversely related to stroke volume
- High afterload results in a decreased stroke volume
 - Requires greater force generation by the myocardium to eject blood into the aorta
 - Reducing aortic pressure results in higher stroke volume

Ventricular Contractility

- Increased contractility results in higher stroke volume
 - Circulating epinephrine and norepinephrine
 - Direct sympathetic stimulation of heart

Factors that Regulate Cardiac Output

Cardiac Output = Heart Rate x Stroke Volume

- Mean arterial pressure
- Parasympathetic nerves
- Sympathetic nerves
- Contraction strength
- EDV
- Stretch

Hemodynamics

The study of the physical principles of blood flow
Physical Characteristics of Blood

- **Plasma**
 - Liquid portion of blood
 - Contains ions, proteins, hormones
- **Cells**
 - Red blood cells
 - Contain hemoglobin to carry oxygen
 - White blood cells
 - Platelets
 - Important in blood clotting

Hematocrit
Percent of blood composed of cells

Hemodynamics
Based on interrelationships between:
- Pressure
- Resistance
- Flow

Hemodynamics: Pressure
- Blood flows from high → low pressure
 - Proportional to the difference between MAP and right atrial pressure (ΔP)

Hemodynamics: Resistance
- Resistance depends upon:
 - Length of the vessel
 - Viscosity of the blood
 - Radius of the vessel
 - A small change in vessel diameter can have a dramatic impact on resistance!

\[
\text{Resistance} = \frac{\text{Length} \times \text{viscosity}}{\text{Radius}^4}
\]
Hemodynamics: Blood Flow

- Directly proportional to the pressure difference between the two ends of the system
- Inversely proportional to resistance

\[
\text{Flow} = \frac{\Delta \text{Pressure}}{\text{Resistance}}
\]

Sources of Vascular Resistance

- MAP decreases throughout the systemic circulation
- Largest drop occurs across the arterioles
 - Arterioles are called “resistance vessels”

Pressure Changes Across the Systemic Circulation

Oxygen Delivery During Exercise

- Oxygen demand by muscles during exercise is many times greater than at rest
- Increased O₂ delivery accomplished by:
 - Increased cardiac output
 - Redistribution of blood flow to skeletal muscle

Changes in Cardiac Output

- Cardiac output increases due to:
 - Increased HR
 - Linear increase to max
 Max HR = 220 - Age (years)
 - Increased SV
 - Plateau at ~40% VO₂max
 - Oxygen uptake by the muscle also increases
 - Higher arteriovenous difference

Changes in Cardiovascular Variables During Exercise
Redistribution of Blood Flow
- Muscle blood flow ↑ to working skeletal muscle
- Splanchnic blood flow ↓ to less active organs
 - Liver, kidneys, GI tract

Increased Blood Flow to Skeletal Muscle During Exercise
- Withdrawal of sympathetic vasoconstriction
- Autoregulation
 - Blood flow increased to meet metabolic demands of tissue
 - O_2 tension, CO_2 tension, pH, potassium, adenosine, nitric oxide

Circulatory Responses to Exercise
- Heart rate and blood pressure
- Depend on:
 - Type, intensity, and duration of exercise
 - Environmental condition
 - Emotional influence

Transition From Rest → Exercise and Exercise → Recovery
- Rapid increase in HR, SV, cardiac output
- Plateau in submaximal (below lactate threshold) exercise
- Recovery depends on:
 - Duration and intensity of exercise
 - Training state of subject
Incremental Exercise

- Heart rate and cardiac output
 - Increases linearly with increasing work rate
 - Reaches plateau at 100% VO$_{2\text{max}}$
- Systolic blood pressure
 - Increases with increasing work rate
- Double product
 - Increases linearly with exercise intensity
 - Indicates the work of the heart

 Double product = heart rate \times \text{systolic BP}

Arm vs. Leg Exercise

- At the same oxygen uptake arm work results in higher:
 - Heart rate
 - Due to higher sympathetic stimulation
 - Blood pressure
 - Due to vasoconstriction of large inactive muscle mass

Prolonged Exercise

- Cardiac output is maintained
 - Gradual decrease in stroke volume
 - Gradual increase in heart rate
- Cardiovascular drift
 - Due to dehydration and increased skin blood flow (rising body temperature)

Cardiovascular Adjustments to Exercise
Summary of Cardiovascular Control During Exercise

- Initial signal to “drive” cardiovascular system comes from higher brain centers
- Fine-tuned by feedback from:
 - Chemoreceptors
 - Mechanoreceptors
 - Baroreceptors

Fig 9.24