SUPER RESOLUTION WITH BETTER EDGE ENHANCEMENT

Gaurav Hansda
Electrical Engineering Graduate Student
The University of Texas at Arlington

Advisor
Dr. K. R. Rao, EE Dept, UTA

Committee Members
Dr. Jonathan Bredow
Dr. Howard Russell
• Introduction of image super-resolution (SR).
• Related works
• Proposed SR framework
• Image quality assessment
• Experimental Results
• Conclusion
• Future work
• References
Introduction of Image Super-resolution
What is resolution?

- Optical resolution
- Image resolution

Super-resolution

- Low resolution (LR) → High resolution (HR)
Significance of SR

- More detail the information contained in image.
- Image resolution is directly proportional to optical resolution.
- Ways to increase the image resolution:
 - Reduce the size of sensing elements
 - Increase the wafer size.
• Surveillance video
• Remote sensing
• Medical imaging (CT, MRI, ultrasound, etc.)
• Video standards conversion, e.g., from NTSC video signal to HDTV signal
• Astronomical imaging
• Target detection and recognition
Related work

- Approaches to super-resolution:
 1. Interpolation based.
 2. Reconstruction based.
 3. Learning based.
Proposed SR Framework
Super-resolution with better edge enhancement
Bilateral Filtering

- Traditional filters (like Gaussian filter) implement only in domain.
- Bilateral filter gets also applied in range of an image.
- Closeness \rightarrow Domain
- Similarity \rightarrow Range
Bilateral Filtering

- Domain filtering: weigh pixel values with distance.
- Range filtering: averages image values with weights that decay with dissimilarity.
- Range filters are non-linear.
- Hence preserve edges.
- Combination of both range and domain filtering is denoted as bilateral filtering.
Super-resolution with better edge enhancement
Super-resolution with better edge enhancement
Mean Shift Image Segmentation

- Decomposition of image into homogeneous tiles.
- Takes advantage of mean shift filtering.
- Works in joint domain i.e. spatial-range domain.
Mean Shift Image Segmentation

- Pixels
 - Spatial location
 - Color/grayscale intensity

- For this pixel a set of neighboring is determined.
- New spatial mean and grayscale mean calculated that serves new center for the next iteration.
- At the end, final mean color will be assigned to the starting position.
Super-resolution with better edge enhancement
Shock filter

- Creates strong discontinuities at image edges.
- The filtered signal within a region delineated by those edges becomes flat.
- Satisfies the maximum -minimum principle [26].
- No appearance of Gibbs phenomenon [27].
Super-resolution with better edge enhancement
• Idea: The reconstructed HR image from the degraded LR image should produce the same observed LR image if passing it through the same blurring and downsampling process.
IBP Process

- Start with initial guess of HR image.
- Simulate a LR image based on this HR image.
- Compare this LR image with the original LR image.
- Propagate or back-project this error onto the initial guessed HR image.
- Iterate this process until the error is minimized.
Super-resolution with better edge enhancement
Significance of initial guess in IBP
Similar Structure Learning

- Two criterions used for structure learning:
 - Zero mean normalized cross correlation (ZNCC).
 - Mean absolute difference (MAD)
- ZNCC emphasizes the similarity of the structural or geometrical content.
- MAD underlines the similarity of the luminance (and color) information.
- If $\text{ZNCC} > \tau_{\text{ZNCC}}$ and $\text{MAD} < \tau_{\text{MAD}} \rightarrow$ Matching block.
Image Quality Assessment (IQA)
Metrics used

- Peak signal-to-noise ratio (PSNR)
- Structural SIMilarity index (SSIM)
- Feature SIMilarity index (FSIM)
 - Human Visual System (HVS) is sensitive low-level features, such as edges and zero crossings.
 - A good IQA metric should compare the low-level feature sets between the reference image and the distorted image.
Experimental Results
Test Images

- Lena
- Clock
- Barche
- Estatua
- Portofino

Super-resolution with better edge enhancement
Comparison using Lena image

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>PSNR (dB)</th>
<th>SSIM</th>
<th>FSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed algorithm</td>
<td>28.91</td>
<td>0.9106</td>
<td>0.9518</td>
</tr>
<tr>
<td>Bicubic interpolation</td>
<td>28.27</td>
<td>0.8631</td>
<td>0.9418</td>
</tr>
<tr>
<td>POCS</td>
<td>27.93</td>
<td>0.9457</td>
<td>0.9467</td>
</tr>
<tr>
<td>NLIBP</td>
<td>28.69</td>
<td>0.8573</td>
<td>0.9259</td>
</tr>
<tr>
<td>2D auto regressive model</td>
<td>29.05</td>
<td>0.8754</td>
<td>0.9487</td>
</tr>
</tbody>
</table>

Super-resolution with better edge enhancement
Comparison using Barche image

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>PSNR (dB)</th>
<th>SSIM</th>
<th>FSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed algorithm</td>
<td>29.24</td>
<td>0.8913</td>
<td>0.9243</td>
</tr>
<tr>
<td>Bicubic interpolation</td>
<td>26.98</td>
<td>0.9331</td>
<td>0.9077</td>
</tr>
<tr>
<td>POCS</td>
<td>21.65</td>
<td>0.6372</td>
<td>0.7567</td>
</tr>
<tr>
<td>NLIBP</td>
<td>27.46</td>
<td>0.8226</td>
<td>0.8845</td>
</tr>
<tr>
<td>2D auto regressive model</td>
<td>27.37</td>
<td>0.8403</td>
<td>0.9161</td>
</tr>
</tbody>
</table>

![Bar chart showing comparison of SSIM and FSIM for different algorithms]

- SSIM
- FSIM

11/19/2012 Super-resolution with better edge enhancement
Comparison using Estatua image

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>PSNR (dB)</th>
<th>SSIM</th>
<th>FSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed algorithm</td>
<td>30.19</td>
<td>0.7933</td>
<td>0.9412</td>
</tr>
<tr>
<td>Bicubic interpolation</td>
<td>29.81</td>
<td>0.776</td>
<td>0.9204</td>
</tr>
<tr>
<td>POCS</td>
<td>24.51</td>
<td>0.6187</td>
<td>0.8101</td>
</tr>
<tr>
<td>NLIBP</td>
<td>30.66</td>
<td>0.7785</td>
<td>0.9033</td>
</tr>
<tr>
<td>2D auto regressive model</td>
<td>30.08</td>
<td>0.784</td>
<td>0.9226</td>
</tr>
</tbody>
</table>

Super-resolution with better edge enhancement
Comparison using Portofino image

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>PSNR (dB)</th>
<th>SSIM</th>
<th>FSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed algorithm</td>
<td>26.97</td>
<td>0.7995</td>
<td>0.9217</td>
</tr>
<tr>
<td>Bicubic interpolation</td>
<td>25.64</td>
<td>0.7728</td>
<td>0.8904</td>
</tr>
<tr>
<td>POCS</td>
<td>22.46</td>
<td>0.588</td>
<td>0.7539</td>
</tr>
<tr>
<td>NLIBP</td>
<td>26.61</td>
<td>0.771</td>
<td>0.8673</td>
</tr>
<tr>
<td>2D auto regressive model</td>
<td>25.71</td>
<td>0.7743</td>
<td>0.8924</td>
</tr>
</tbody>
</table>

![Graph with bar chart showing comparison of algorithms]
Comparison using Clock image

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>PSNR (dB)</th>
<th>SSIM</th>
<th>FSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed algorithm</td>
<td>29.19</td>
<td>0.929</td>
<td>0.9268</td>
</tr>
<tr>
<td>Bicubic interpolation</td>
<td>28.63</td>
<td>0.9331</td>
<td>0.9305</td>
</tr>
<tr>
<td>POCS</td>
<td>21.74</td>
<td>0.8201</td>
<td>0.8049</td>
</tr>
<tr>
<td>NLIBP</td>
<td>29.19</td>
<td>0.9292</td>
<td>0.9215</td>
</tr>
<tr>
<td>2D auto regressive model</td>
<td>28.98</td>
<td>0.9357</td>
<td>0.9379</td>
</tr>
</tbody>
</table>

![Bar chart comparing different algorithms based on PSNR, SSIM, and FSIM metrics.]
Conclusion

- 3-6% increase in the FSIM index.
- The proposed algorithm out-perform the other existing techniques when the image scene under consideration has more details (complex) in it. E.g. portofino, estatua and even barche.
Future Work
Super-resolution with better edge enhancement
References

Questions??