COMPRESSIVE SENSING OF IMAGE AND COMPARISON WITH JPEG AND JPEG 2000

Name: SANIL FULANI
Student Id: 1000645167
EE 5359 : Multimedia Processing

Note: This report is just a proposal report for the project. It should not be considered as final report. ©Sanil Fulani
TOPICS COVERED

- OVERVIEW OF COMPRESSIVE SAMPLING
- PROCESS OF CONVENTIONAL COMPRESSION
- COMPRESSIVE SENSING CONCEPT FOR IMPLEMENTATION
- COMPARISON WITH JPEG IMAGE COMPRESSION
- CHALLENGE
- APPLICATION
- PROGRESS CHART
Overview

Technological development

• Exploded since 2006
• Pixel growing \rightarrow crunch size \rightarrow better compression algorithm \rightarrow rise of “COMPRESSIVE SENSING (CS)”
• Compressive sensing \rightarrow below Nyquist rate \rightarrow Against Shannon’s Theory
• CS \rightarrow enables ‘Design of Digital Acquisition devices’
• Measurements \rightarrow Inter-products with some random ‘basis’ functions.
• Hardware \rightarrow single- pixel camera
• Signals are sparse.
Schematic of Rice 1-pixel camera
courtesy RICE UNIVERSITY
Physical Implementation of the camera
courtesy RICE UNIVERSITY
Introduction to Data Acquisition

• Shannon/Nyquist Sampling Theorem
 – Must sample more than twice the signal bandwidth,

 – Might end up with a huge number of samples
 ➔ Need to Compress!

 – Doing more work than needed?
Conventional Process of Compression

• After data acquisition → DCT
• Many coefficients → zero → discarded before quantization
• This makes Compressive Sampling applicable where Nyquist rate is high → where compressing sheer volume of samples → problem for transmission and storage
Compressive Sensing

- Split image \rightarrow small non-overlapping blocks of equal size \rightarrow apply DCT on blocks found to be sparse.
- Sparse blocks selection:
 - Let C – a small positive constant.
 - T – an integer threshold i.e. representative of avg no. of non-significant DCT coefficients over all blocks

- No. of DCT coefficients \rightarrow less than C
 - \rightarrow larger than T

The block selected as reference for Compressing Sampling
Compressive Sensing

\[K \approx M \ll N \]

Fig. Compressive sensing based data acquisition system
 Concept

• Let $x = \{x[1], \ldots ,x[N]\}$ be a set of N pixels of an image. Let s be the representation of ‘x’ in the transform domain, that is:

$$x = \Psi s = \sum_{i=1}^{N} s_i \psi_i$$

• Let y be an M-length measurement vector given by: $y = \Phi x$, where Φ is a $M \times N$ measurement matrix (independent identically distributed (i.i.d.) Gaussian matrix). The above expression can be written in terms of s as:

$$y = \Phi \Psi s$$

• $K < M \ll N \rightarrow$ Reduce Redundancy by selecting M-samples of signal.
Signal Recovery

• Orthogonal Matching Pursuit (OMP) algorithm
 – Where, all sampled coefficients \rightarrow less than C \rightarrow set to zero
 – Hence, for $C>0$, sampling process always ‘lossy’
 – i.e. if $N-K$, non-significant samples then \rightarrow atleast $M=K+1$ samples needed for reconstruction
 – It even fails when M is too low, or all DCT coefficients are zero or if division by zero in OMP algorithm appears.
• Other approach

1) L0 norm
 • L0 sparsest coefficients
 • Unfortunately its complex hence fails

2) L2 norm
 • Pros: simple mathematically (involving only a matrix multiplication by the pseudo-inverse of the basis sampled in).
 • Cons: poor results for most practical applications, as the unknown (not sampled) coefficients seldom have zero energy.
• Hence, following Tao, the \textbf{L1 norm}, or the sum of the absolute values, is usually what is minimized.

• Finding the candidate with the smallest L1 norm can be expressed relatively easily as a linear program, for which efficient solution methods already exist. This leads to comparable results as using the L0 norm, often yielding results with many coefficients being zero.

• This optimization also known as \textbf{BASIS PURSUIT}

• excellent approximation via the L1 norm minimization is given by:

\[
\hat{s} = \arg \min_{s'} \|s'\|_1, \text{ such that } \Phi \Psi s' = y.
\]
Block Diagram of JPEG Baseline

Figure 1. DCT-Based Encoder Processing Steps

Figure 2. DCT-Based Decoder Processing Steps
CHALLENGE

• CS replaces conventional sampling and reconstruction → linear measurement scheme
• However, will work ‘ONLY IF SOURCE IS SPARSE’
• Challenge to predict which sources are sparse in a particular domain.
 • Applying CS → whole image → ineffective
 • Hence, split image → small non-overlapping blocks of equal size → apply CS on blocks found to be sparse
APPLICATION

• Analog to Digital Conversion - a fundamental aspect of Wireless Communications.

• Eg. CDMA \rightarrow voice msg \rightarrow 4096 hertz standard freq \rightarrow spreads over radio spectrum \rightarrow span thousands of hertz

• Here \rightarrow signal still sparse \rightarrow so detector recover signal more rapidly then Shannon’s theorem.
Other Applications

- Data Acquisition
- Data Compression
- Image and Video Compression
PROGRESS CHART

- **February 28, 2010** – Research Reading on compressive sensing and information gathering
- **March 20, 2010** – complete research reading and jpeg simulation part
- **April 10, 2010** – complete compressive sensing coding
- **April 20, 2010** – Final touch and documentation report
References

• Emmanuel Candès, Justin Romberg, and Terence Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. (IEEE Trans. on Information Theory, 52(2) pp. 489 - 509, February 2006)
• Madhu Krishnan, Compressive sensing for video acquisition, University of Texas at Arlington.
• Emmanuel Candès and Justin Romberg, Quantitative robust uncertainty principles and optimally sparse decompositions. (Foundations of Compute. Math., 6(2), pp. 227 - 254, April 2006)
• David Donoho, Compressed sensing. (IEEE Trans. on Information Theory, 52(4), pp. 1289 - 1306, April 2006)
• Emmanuel Candès and Justin Romberg, Practical signal recovery from random projections. (Preprint, Jan. 2005)
References

• Emmanuel Candès, Justin Romberg, and Terence Tao, **Stable signal recovery from incomplete and inaccurate measurements.** (Communications on Pure and Applied Mathematics, 59(8), pp. 1207-1223, August 2006)

• Emmanuel Candès and Terence Tao, **The Dantzig Selector: Statistical estimation when p is much larger than n** (To appear in Annals of Statistics)

• Holger Rauhut, Karin Schass, and Pierre Vanderghynst, **Compressed sensing and redundant dictionaries.** (IEEE Trans. on Information Theory, 54(5), pp. 2210 - 2219, May 2008)

• Albert Cohen, Wolfgang Dahmen, and Ronald DeVore, Compressed sensing and best k-term approximation. (Preprint, 2006) [Formerly titled "Remarks on compressed sensing"]
References

• Emmanuel Candès and Justin Romberg, Sparsity and incoherence in compressive sampling. (Inverse Problems, 23(3) pp. 969-985, 2007)

• Albert Cohen, Wolfgang Dahmen, and Ronald DeVore, Compressed sensing and best k-term approximation. (Preprint, 2006) [Formerly titled "Remarks on compressed sensing"]

• www.jpeg.org

• http://faculty.ksu.edu.sa/hedjar/Documents/MATLAB_Educational_Sites.htm

• http://dsp.rice.edu/cs (Compressive Sensing Resources)
END

THANK YOU

?