Chapter 6
Assessment of Acute Knee Injuries

Objectives
- Discuss the common forces that produce acute injuries
- Identify and discuss the common acute injuries to the knee
- Review the following components of injury assessment related to the acute knee injuries
 - Mechanism of injury
 - Signs
 - Symptoms
 - Stress tests
 - Special tests

Forces Acting on the Knee to Produce Acute Injuries
- Compressive
- Tensile
- Shear
- Rotational

Common Acute Knee Injuries
- Sprain
- Strain
- Meniscal injury
- Chondral lesion
- Fracture
- Dislocation

Common Chronic Knee Injuries
- Tendinitis
- Bursitis
- Osgood-Schlatter disease
- Sinding-Larsen-Johansson disease
- Iliotibial band syndrome
- Baker’s cyst
- Osteoarthritis

History

<table>
<thead>
<tr>
<th>Location of pain</th>
<th>Differential Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior</td>
<td>Patellofemoral syndrome</td>
</tr>
<tr>
<td></td>
<td>Patellar/quadriceps tendinitis</td>
</tr>
<tr>
<td></td>
<td>Osgood-Schlatter disease</td>
</tr>
<tr>
<td></td>
<td>Sinding-Larsen-Johansson disease</td>
</tr>
<tr>
<td></td>
<td>Degenerative joint disease (OA)</td>
</tr>
<tr>
<td></td>
<td>Osteochondral defect (OCD)</td>
</tr>
</tbody>
</table>

Anterior
History

<table>
<thead>
<tr>
<th>Location of pain</th>
<th>Differential Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medial</td>
<td>MCL sprain</td>
</tr>
<tr>
<td></td>
<td>Medial meniscus tear</td>
</tr>
<tr>
<td></td>
<td>Pes anserine bursitis/tendinitis</td>
</tr>
<tr>
<td></td>
<td>OA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location of pain</th>
<th>Differential Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral</td>
<td>LCL sprain</td>
</tr>
<tr>
<td></td>
<td>Lateral meniscus tear</td>
</tr>
<tr>
<td></td>
<td>Iliotibial band syndrome</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location of pain</th>
<th>Differential Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posterior</td>
<td>Meniscal tears in the posterior horns</td>
</tr>
<tr>
<td></td>
<td>PCL tear</td>
</tr>
<tr>
<td></td>
<td>Baker’s cyst</td>
</tr>
<tr>
<td></td>
<td>Popliteus tendinitis</td>
</tr>
</tbody>
</table>

- **Mechanism of injury**
 - Direct blows \Rightarrow fx, dislocation, MCL/LCL/ACL/PCP tears
 - Pivot injury \Rightarrow patellar dislocation, ACL tear, meniscus injury
 - Non-contact deceleration injury \Rightarrow ACL tear

History

- Acute vs. chronic
- Locking?
- Instability?
- Recent treatment
- Previous injury/previous treatment

Observation

- Deformity
- Effusion
 - Large effusion \Rightarrow ACL tear, intraarticular fx, peripheral meniscal tear
 - 4-12 hours: ACL tear
 - 12-36 hours: meniscal tear
Observation

- Knee alignment
- Genu valgum
- Genu varum
- Genu recurvatum
- Muscle asymmetry or atrophy

Observation

Palpation

- Anterior
 - Patella
 - Patellar tendon
 - Quadriceps tendon
 - Joint line
 - Tibial tubercle

Palpation

- Medial
 - MCL
 - Meniscus
 - Pes anserine tendons
 - Pes anserine bursa
 - Medial femoral condyle
 - Medial facet of patella
 - Medial retinaculum

Palpation

- Lateral
 - LCL
 - Lateral meniscus
 - Iliotibial band
 - Gerdy's tubercle
 - Lateral femoral condyle
 - Lateral retinaculum
Palpation
- Posterior
 - Hamstring tendons
 - Posterior joint line (posterior horns of menisci)
 - Popliteal fossa

ROM
- Flexion
- Extension

Stress Tests
- Valgus
- Varus
- Lachman
- Anterior drawer
- Posterior drawer
- Slocum rotary drawer

Valgus Stress Test
- 30° flexion
- Full extension

Varus Stress Test
- 30° flexion
- Full extension

Lachman & Anterior Drawer
- Anterior Drawer
- Lachman
Slocum Rotary Drawer
- Foot in internal rotation
 - Posterior lateral instability
- Foot in external rotation
 - Posterior medial instability

Posterior Drawer

Special Test
- Posterior sag (Godfrey’s)
- Pivot shift
- McMurray
- Apley’s compression & distraction

Posterior Sag (Godfrey’s)

Specific Knee Injuries
- Acute Ligamentous Injuries
- Meniscal Injuries

MCL Sprains
- History
 - MOI
- Signs
- Symptoms
MCL Sprains

- Observation
- Palpation

MCL Sprains

- Stress tests
- Special tests

MCL Sprains

- Stress tests
- Special tests

MCL Sprains

- Management
 - 1st degree
 - PRICE
 - NSAIDs
 - Early ambulation is recommended (use crutches if patient walks with limp)
 - Early ROM
 - Strengthening (closed chain)
 - Usually out for 1-2 wks
 - Should be protected when returned to play

MCL Sprains

- Management
 - 2nd degree
 - PRICE
 - NSAIDs
 - Hinged brace
 - Crutches w/PWB when necessary
 - Early ROM
 - Strengthening (closed chain)
 - Usually out for 3-4 wks
 - Should be protected when returned to play

MCL Sprains

- Management
 - 3rd degree
 - PRICE
 - Knee immobilizer
 - Crutches - NWB
 - NSAIDs
 - Usually out for 6 wks or longer
 - Must be protected when returned to play
LCL Sprains

- **History**
 - MOI

- **Signs**

- **Symptoms**

Arcuate Ligament Complex

LCL Sprains

- **Stress Tests**

- **Special Tests**

LCL Sprains

- **Management**
 - Similar to MCL sprains
 - May heal slower to different collagen structure of ligament

ACL Sprains

- **Females are 2-8 times more likely to tear their ACL than their male counterparts.**
- **72% are non-contact mechanisms**

ACL Sprains

- **MOI**
 - Foot strike with knee near full extension
 - Sudden deceleration
 - Landing
 - Rapid change in direction

What sports are associated with a high frequency of landing, deceleration, and rapid change of direction?
ACL Sprains

■ MOI

The “position of no return”

Predisposing Factors

■ Intrinsic
 ■ Anatomical
 ■ Arthrokinematic
 ■ Hormonal factors

Predisposing Factors

■ Extrinsic
 ■ Position of no return
 ■ Muscle strength & conditioning (quad to ham ratios)
 ■ Neuromuscular factors
 ■ Recruitment
 ■ Less joint stiffness
 ■ Longer electromechanical delay

ACL Research: Landing & Cutting Mechanics

■ Females tend to land with less knee flexion and less internal rotation.

ACL Research: Landing & Cutting Mechanics

■ Females take less time to reach full knee flexion.
 ■ Not attenuating force
ACL Research: **Landing and Cutting Mechanics**

- Females land with more knee valgus (knocked knees) in vertical and backward stop-jump tasks.

ACL Sprains

- **Signs**
 - Hemarthrosis (within 4-12 hours)
- **Symptoms**
 - Patient reports a “pop”
 - Pain (extreme at first)
 - Patient may report “giving way of knee”

ACL Sprains

- **Stress Tests**
- **Special Tests**

ACL Sprains

- **Management**
 - Initial
 - PRICE
 - NSAIDs
 - Crutches – PWB
 - Hinge brace

ACL Sprains

- **Management**
 - Surgical options
 - Autografts (taken from the patient’s body)
 - Bone-patellar tendon-bone
 - Semitendinosus/gracilis tendons
 - Allograft (taken from cadaver)
 - Patellar tendon
 - Achilles tendon

PCL Sprains

- **Anatomy**
PCL Sprains

- MOI

Knee Sprains in Adolescents

- Remember that epiphyseal fxs may mimic knee ligament sprains

PCL Sprains

- Signs and Symptoms

PCL Sprains

- Stress Tests

- Special Tests

PCL Sprains

- Management

Meniscal Injuries

- Function of menisci?
Meniscal Injuries

- MOI
- Signs
- Symptoms
- Stress tests
- Special tests

Meniscal Injuries

Other types of tears

Flap tear

Meniscal Injuries

Management?
Meniscal Injuries