Basic Pharmacology & Pharmokinetics

Objectives
- Discuss drug nomenclature and classifications
- Describe the processes involved with pharmacokinetics and pharmacodynamics
- Discuss potential drug interactions

Drug Nomenclature
- Drugs are identified by one of 3 names:
 - Chemical — long name, refers to the chemical structure of the drug
 - Generic — shorter name derived from the chemical name [nonproprietary]
 - Trade — brand name assigned by the manufacturer

<table>
<thead>
<tr>
<th>Generic Name</th>
<th>Trade Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>Tylenol, Pain-Reliever</td>
</tr>
<tr>
<td>Celecoxib</td>
<td>Celebrex</td>
</tr>
<tr>
<td>Penicillin</td>
<td>V-Cillin, Amoxicillin</td>
</tr>
<tr>
<td>Cephalosporin</td>
<td>Keflex, Keflin, Suprax, Utrace</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>E-Mycin, Erythrocin</td>
</tr>
<tr>
<td>Synephrine</td>
<td>Neo-Synephrine, Afrin, Oxymetazoline</td>
</tr>
<tr>
<td>Pseudoephedrine</td>
<td>Actifed, Sudafed</td>
</tr>
</tbody>
</table>

Drug Classification
- **Over-the-counter (OTC)**
- **Prescription (controlled substance)**
 - Schedule I – highest potential for abuse
 - Schedule II
 - Schedule III
 - Schedule IV
 - Schedule V – lowest potential for abuse

Abbreviations for dosage
- **bid** — twice a day
- **tid** — three times a day
- **qid** — four times a day
Drug Classification
- Most narcotic pain prescriptions are classified as Schedule III
- Anabolic steroids are also Schedule III

The Study of Drugs
- **Pharmacology** – science of drugs
- **Pharmacokinetics** – process related to how the body acts on the drug
- **Pharmacodynamics** – process related to how a drug acts on the body

Pharmacokinetics
- How the body handles a drug
- Two primary routes of administration
 - enteral
 - parenteral
- Four phases (ADME)
 - absorption
 - distribution
 - metabolism
 - elimination

Routes of Drug Administration
- **Enteral**
 - oral
 - sublingual
 - rectal
- **Parenteral**
 - inhalation
 - injection
 - topical or transdermal application

Systems effects
- **Oral**
- **Injection** (either intramuscular, intravenous, subcutaneous, or intra-articular)
- **Intranasal**
- **Oral inhalation**
- **Sublingual** (under the tongue)
- **Buccal** (inside the cheek or directly on the gum)
- **Rectal**
Routes of Drug Administration

Local effects
- Ophthalmic (eye)
- Otic (ear)
- Topical (skin)

Most immediate effects produced by:
- Intravenous
- Inhalation (oral or nasal)
- Sublingual absorption
- Drugs administered orally may require 30 minutes before relief is provided
- Liquids or powders dissolved in water will act more quickly than tablets or capsules

Drug Concentrations
- A drug’s most intense effects occur during the peak serum concentration
- When the highest level of the drug is in the bloodstream

ADME Process of Pharmacokinetics
- Absorption
- Distribution
- Metabolism
- Elimination or Excretion

Absorption
- For a drug to produce a therapeutic effect, it must be absorbed into the bloodstream and distributed through the circulation
- Absorption requires the drug molecule to move across a membrane
 - Simple diffusion
 - Facilitated diffusion
Absorption

- Drugs taken by mouth pass to the stomach & then the intestine
- They are absorbed from the GI tract into the circulatory system

Absorption

- Lipid soluble drugs can easily pass through the blood-brain barrier to affect the CNS

Absorption

- Exercise decreases absorption of drugs taken by mouth
 - Blood is diverted away from the GI tract to the skeletal muscles
 - When the body absorbs less of a drug, its therapeutic effectiveness is decreased

Absorption

- Can be affected by the drug’s bioavailability
 - The amount of drug actual active in the body tissues
 - Typically just a fraction of its dosage size
 - If a drug’s bioavailability is 50%, then the body will only absorb 250 mg of a 500 mg dose.
 - Naproxen (Naprosyn) – bioavailability is 95%
 - Voltaren – bioavailability is 50-60%

Distribution

- Once absorbed into the bloodstream, the drug can be distributed to target sites throughout the body
- Exercise increases the distribution of most drugs
 - Increasing cardiac output increases the speed at which the circulatory system carries the drug to its target site

Distribution

- Affected by a drug’s lipid solubility
 - Drugs with high lipid solubility can easily penetrate fat stores and cross membrane barriers → providing a broader distribution
 - Water soluble drugs can be easily eliminated from the body
 - Fat soluble drugs can be stored in the body, providing longer lasting effects
Metabolism
- Clearing process that breaks down substances into water soluble form for easy excretion
 - primary site → liver
 - may also occur in the kidneys, GI tract, and lungs.

Metabolism
- Exercise can decrease the clearance of some drugs due to blood being diverted away from the GI, kidneys, and liver to the working skeletal muscle

Metabolism
- **HOWEVER**, since the duration of the drug's effects is usually longer than an exercise session, the overall effect of exercise on drug metabolism is *insignificant* or *negligible*.

Elimination or Excretion
- **Removal of the drug from the body**
 - Primary method
 - kidneys → urine
 - Other methods
 - Biliary tract → feces
 - Lungs → respiration
 - Sweat glands → perspiration

Elimination or Excretion
- Exercise can slow the rate of excretion since blood flow will be diverted away from the kidneys to the working skeletal muscle
- Excretion rate also affected by the drug's **half-life**

Elimination or Excretion
- **half-life** – the time required for the body to eliminate one-half of a dosage of a drug by regular physical processes
 - if a drug has a half-life of 8 hours, then it will take 8 hours for the blood concentration of the drug to be decreased by 50%
Elimination or Excretion

- Naproxen (Naprosyn) has a half-life of 12-17 hours.
- It will take 12 hours to reduce the blood concentration of a 500 mg dose to 250 mg.
- Water soluble drugs will have shorter half-life than lipid soluble drugs.
- Lipid soluble drugs will remain in the system longer.

Pharmacodynamics

For drugs to work, they must bind with a receptor:
- The receptor can be a molecule within a cell or on the cell membrane.
- Relationship between a drug and receptor is much like a lock and key:
 - very specific fit
 - any chemical change in the drug or the receptor can change the interaction

Drug dosing:
- Based on the drug’s potency, the patient’s age, the patient’s condition
- Potency:
 - Strength of drug; the greater the potency, the smaller the dose necessary to produce therapeutic effect

Examples of Drug Dosing

- Aspirin:
 - Usually manufactured in 325 mg tablets.
 - Typical dose = 2 tablets (650 mg) every four hours.

- Ibuprofen:
 - Typical dose = 400 mg.

- Ketoprofen (Orudis):
 - Typical dose 12.5 mg every four to six hours.

Drug Interactions

- Occur when one drug alters the effect of another drug.
- May change how the body handles one or both of the drugs:
 - Antacids reduce the body’s ability to absorb acetaminophen from the intestine.
 - Some antibiotics may accelerate the metabolism of oral contraceptives.
- May change the way a drug acts on the body.
Drug Interactions

- Can be additive or inhibitive
 - Additive effects occur when someone takes two drugs of the same type at the same time
 - Example: two stimulants or two depressants
 - The effects of the drugs “add together”

- Can easily occur through innocent use of OTC meds
 - Particularly with combination products for the treatment of colds and allergies
 - Caution your athletes to read the labels of OTC meds
 - Inhibitory effects may occur with the combination of two unrelated drugs

Inhibitory effects (agonistic)
- A diet pill (appetite suppressant – which is a stimulant) combined with several cups of coffee (also a stimulant) may cause heart palpitations, tachycardia, insomnia
- Alcohol combined with an antihistamine (both are depressants) may cause excessive drowsiness, dizziness, loss of muscle coordination, and loss of mental alertness

Inhibitory effects (antagonistic)
- Some antibiotics may inhibit or reduce the effectiveness of oral contraceptives
- Aspirin may increase the effects of insulin
- Dairy products may reduce the effectiveness of tetracycline (an antibiotic)

Adverse Drug Reactions

- Range from a side-effect to hypersensitivity
 - Examples of side effects:
 - Drowsiness produced by an antihistamine
 - Loss of appetite associated with many antibiotics
 - Examples of hypersensitivity:
 - Allergic reactions that range from a simple rash to bronchial spasm or anaphylactic shock
Adverse Drug Reactions
- Can occur immediately or be delayed
 - Most delayed effects occur with chronic use of a drug
 - Chronic use of Tylenol is linked to liver damage

Sources of Drug Information
- Physician's Desk Reference
- Facts and Comparisons
- NCAA website
- USOC website

Questions?