Exam 2, EE5350 and EE4318, Fall 2010

1. Find z-transforms of the following in closed form, and their regions of convergence.
 (a) $u(-n)$ (b) $a^n u(n-5)$ (c) $n \cdot u(-n)$ (d) $\cos(w_2 \cdot n) u(n)$

2. An IIR digital filter has the transfer function

 $H(z) = \frac{2 - 7z^{-1}}{1 - 7z^{-1} + 10z^{-2}}$

 (a) Using the partial fraction expansion, or another method, find the causal impulse response $h(n)$, as the sum of two exponentials.
 (b) Give a stable version of the impulse response $h(n)$.
 (c) Letting $H(z) = H(z)/D(z)$, where $D(z)$ is the z-transform of $\delta(n)$, give a causal difference equation that calculates $h(n)$ (as in part (a)) in terms of $\delta(n)$. Give $D(z)$.
 (d) Give the first two terms of $h(n)$ ($h(0)$ and $h(1)$) that result when long division is used to find the causal $h(n)$.
 (e) Give the first two terms of $h(n)$ ($h(-1)$ and $h(-2)$) that result when long division is used to find the anti-causal $h(n)$ from

 $H(z) = \frac{-7z + 2z^2}{10 - 7z + z^2}$

3. Given $H(z)$ in the problem statement of problem 2:
 (a) Give the poles of $H(z)$, and its region of convergence. Are the poles inside the region of convergence ?
 (b) Give the region of convergence of $H(z)$, when $h(n)$ is anticausal. Are the poles inside the region of convergence ?
 (c) How many versions of $h(n)$ can be found from $H(z)$, each corresponding to a different region of convergence ? How many of these versions have a frequency response ?

4. Find $y(n)$ in terms of $x(n)$ and $h(n)$ (which can be complex).

 (a) $Y(k) = H^*(k) \cdot X(k)$, (b) $Y(k) = \sum_{m=0}^{N-1} H(m - k)N \cdot X(m + k)N$
5. For the infinite length sequence $x(n)$, we want to calculate a frequency domain model in a moving N-sample window as

$$X_n(k) = \sum_{m=0}^{N-1} x(n - N + 1 + m) \cdot W_N^{mk}$$

(a) Express $X_{n+1}(k)$ as $X_n(k)W_N^{-k}$ plus two additional terms.
(b) Replacing n by $n-1$ in part (a), give a final expression for $X_n(k)$ in terms of $X_{n-1}(k)$
(c) Assume $x(n) = 0$ for n negative. What is the smallest value of n for which $X_n(k)$ in part (b) is calculated using no zero-valued samples. (Hint: $X_n(k) = [X_{n-1}(k) - x() + x()]W_N^0$. All 3 terms in the brackets have $x()$.)
(d) Before calculating $X_n(k)$ for $n=0$, how should $X_{n-1}(k)$ be initialized?
(e) For n varying from 0 to $N-2$, modify your answer from part (b), so that no zero-valued quantities are used.

6. A causal FIR digital filter $h(n)$ is to be designed using the inverse DFT. Assume that its desired frequency response $H_d(e^{jw})$ is available for $0 \leq w \leq \pi$.
(a) When generating $H(k)$, $H_d(e^{jw})$ is to sampled as $w = k \cdot \Delta w$, where Δw is known. Find the DFT order N in terms of Δw.
(b) The pseudocode below uses the inverse DFT or FFT to generate $h(n)$. Give the correct value for W, in the first line of code.
(c) Give the correct expression for X, in terms of N, in the second line of code.
(d) Give the correct expression for Y, in the third line of code, using N rather than Δw.
(e) Give the correct expression for Z, in the fifth line of code.

```
H(0) = H(exp(jW))
For 1 \leq k \leq X
w(k) = Y
H(k) = H(exp(jw(k)))
H(N-k) = Z
End
h(n) = DFT^{-1}\{H(k)\}
```