1. A sigmoidal MLP has 8 inputs, 12 units in the first hidden layer, 6 units in the second hidden layer, and 3 outputs. It is fully connected. As usual, thresholds in the hidden and output layers are handled by adding a 9th input that equals 1.
 (a) Give the lower and upper bounds on pattern storage.
 (b) How many absolute free parameters are there in the network?
 (c) What degree functional link net would have at least as great a pattern storage as the MLP’s lower bound?
 (d) What degree functional link net would have at least as great a pattern storage as the MLP’s upper bound?

2. In a group of N_{v1} training patterns, each of the N_u unique input vectors occurs K times, each time with a different desired output vector. Therefore, $N_{v1} = K \cdot N_u$.
 For the kth unique input vector x_k, the corresponding desired output vectors are t_{km} for m between 1 and K. In a second group of N_{v2} training patterns, input vectors and desired output vectors are unique.
 (a) When a very powerful training algorithm trains an MLP with P_{ab} absolute free parameters for patterns in the first group, let the output training error be denoted as E_1. For what value of P_{ab} will should E_1 reach its minimum?
 (b) In terms of K and t_{km}, what output y_k will the network of part (a) produce every time x_k is the input vector?
 (c) If the same training algorithm trains an MLP with P_{ab} absolute free parameters, for patterns in the second group, what training error E_2 can we expect when $P_{ab}/M = N_{v2}$?
 (d) Putting both groups together, we have N_v training patterns, where $N_v = N_{v1} + N_{v2}$. If we train a third network on all N_v patterns, for what value of P_{ab} can E reach its minimum value? Give the resulting value of E in terms of symbols E_1, E_2, N_{v1}, N_{v2}, and N_v.

3. In the proof of theorem 4.2, we need to show that $E[(t(i) - y_{opt}(i)) \cdot (y_{opt}(i) - y(i))] = 0$. Using $y(i)$’s Schmidt procedure basis functions for $y_{opt}(i)$ and $t(i)$ as well, we have
 \[y(i) = \sum_{k=1}^{L} w_o'(k)X'_k, \quad y_{opt}(i) = \sum_{k=1}^{L+K} w_o'(k)X'_k, \quad t(i) = e + \sum_{k=1}^{m} w_o'(k)X'_k \]
 where, e is zero-mean noise statistically independent of the basis functions.
 (a) Plug the expressions above into $E[(t(i) - y_{opt}(i)) \cdot (y_{opt}(i) - y(i))]$ and simplify, without evaluating the expected value operator.
 (b) Applying the expected value operator, why is the final answer zero?
4. In a classifier with L basis functions and M classes, suppose the $M \times L$ “optimal” output weight matrix W^{opt} is known, as well as the $L \times L$ basis function autocorrelation matrix R.

(a) Find C^{opt} in terms of R and W^{opt}.

(b) We know that C^{opt} can be expressed as

$$C^{\text{opt}} = \frac{1}{N_c} \sum_{p=1}^{N_c} X_p (t_p)^T$$

If $c(i)$ is the ith column of C^{opt}, and the pth element of the column vector $t(i)$ is $t_p(i)$, find the nth row pth column element of the $L \times N_c$ matrix A so that

$$c(i) = A \cdot t(i)$$

(c) If we solve the linear equations above for the desired outputs $t_p(i)$, under what circumstances is the vector $t(i)$ unique?

5. When neural classifier desired outputs are coded, performance is usually bad. However, it may be possible for them to have $(N_c - 1)$ desired outputs, and still have good performance. For the $N_c = 3$ case, let the desired uncoded MLP classifier outputs be $t(i) = \delta(i - i_c)$ where i_c is the correct class. Let $y(1)$, $y(2)$, and $y(3)$ denote the uncoded MLP classifier outputs. Suppose that two coded desired outputs are used, which are $t'(1) = t(1) - t(2)$ and $t'(2) = t(2) - t(3)$.

(a) Given the coded outputs $y'(1)$ and $y'(2)$, how can we construct $y'(3)$? What are the three possible values of $t'(i)$?

(b) Given $y'(1)$, $y'(2)$, and $y'(3)$, when do we decide class 1? class 2? class 3?

(c) Realistically, we can model $y'(1)$ as $t'(1) + e(1)$ and $y'(2)$ as $t'(2) + e(2)$, where $e(1)$ and $e(2)$ are noise. We can also model $y'(3)$ as $t'(3) + e(3)$. If $e(1)$ and $e(2)$ are statistically independent noise and vary from -.8 to +.8, how will $e(3)$ vary?

(d) In part (c), can $y'(1)$ or $y'(2)$ ever have the incorrect sign? Can $y'(3)$ ever have the incorrect sign?

(e) Considering your answer in part (d), is this new set of coded outputs as good as using uncoded outputs?
6. A support vector machine (SVM) classifier has N inputs, N_{sv} support vectors (SVs or hidden units), one output, and one output threshold b. The hidden units are already initialized and are not trained.

(a) How many training patterns can be memorized by this network structure, if the usual MSE E is minimized using OWO? Hint: Use C_L.

(b) If the output weights are $w(k)$ for $1 \leq k \leq N_{sv}$, what term E_1 can added to E before training, so that only N_{sv} patterns are memorized?

(c) Given N_v training patterns and a known value of N_{sv} that is less than N_v, we want to use LM to minimize the error function $E_t = E + E_1$ to train an SVM. However, we don’t know which group of N_{sv} patterns are the support vectors. In terms of N_v and N_{sv}, how many networks, at most, do we train before finding the SVM?

(d) Continuing part (c), how do we know when we’ve found the SVM?
Reference Material

Theorem 4.2: When a network’s output y minimizes the training MSE with respect to its weights, this error can be decomposed as:

$$E[||t - y||^2] = E[||t - y_{opt}||^2] + E[||y_{opt} - y||^2].$$

Here y_{opt}, which is the output of a network similar to that of y but more complex, minimizes $E[||t - y_{opt}||^2]$.

Given a set of N elements, the number of subsets of size M is

$$\binom{N}{M} = \frac{N!}{(N-M)!M!}$$