MINIMIZATION PRINCIPLES FOR THE LINEAR RESPONSE EIGENVALUE PROBLEM I: THEORY∗

ZHAOJUN BAI† AND REN-CANG LI‡

Abstract. We present two theoretical results for the linear response eigenvalue problem. The first result is a minimization principle for the sum of the smallest eigenvalues with the positive sign. The second result is Cauchy-like interlacing inequalities. Although the linear response eigenvalue problem is a nonsymmetric eigenvalue problem, these results mirror the well-known trace minimization principle and Cauchy’s interlacing inequalities for the symmetric eigenvalue problem.

Key words. eigenvalue, eigenvector, minimization principle, random phase approximation, quantum linear response

AMS subject classifications. Primary, 65L15; Secondary, 15A18, 81Q15

DOI. 10.1137/110838960

1. Introduction. In this paper, we consider the eigenvalue problem of the form

\[H z = \begin{bmatrix} 0 & K \\ M & 0 \end{bmatrix} \begin{bmatrix} y \\ x \end{bmatrix} = \lambda \begin{bmatrix} y \\ x \end{bmatrix} = \lambda z, \]

where \(K \) and \(M \) are \(n \times n \) symmetric positive semidefinite matrices and one of them is definite. We refer to it as a linear response (LR) eigenvalue problem for the reason to be explained later.

The LR eigenvalue problem (1.1) arises from computing excitation states (energies) of physical systems in the study of collective motion of many particle systems, ranging from silicon nanoparticles and nanoscale materials to analysis of interstellar clouds (see, e.g., [7, 20, 25]). In computational quantum chemistry and physics, the excitation states are described by the random phase approximation (RPA), a linear response perturbation analysis in the time-dependent density functional theory. There has been a great deal of recent work on and interest in developing efficient numerical algorithms and simulation techniques for excitation response calculations of molecules for materials design in energy science [9, 21, 28, 29].

The heart of (nonrelativistic) RPA calculation is to compute a few smallest positive eigenvalues and corresponding eigenvectors of the following eigenvalue problem:

\[H \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} A & B \\ -B & -A \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \lambda \begin{bmatrix} u \\ v \end{bmatrix}, \]

where \(A \) and \(B \) are \(n \times n \) real symmetric matrices such that the symmetric matrix
\[\begin{bmatrix} A & B \\ B & A \end{bmatrix} \] is positive definite \cite{27, 32}. In physics literature, it is this eigenvalue problem that is referred to as the LR eigenvalue problem \cite{24}, or the RPA eigenvalue problem \cite{10}. We point out that this eigenvalue problem is also a special case of the so-called Hamiltonian eigenvalue problem because \(H \) in (1.2) is a Hamiltonian matrix. Therefore existing developments in, e.g., \cite{3, 4, 18, 22, 35} on the Hamiltonian eigenvalue problem apply. In general, the eigenvalues of a Hamiltonian matrix come in pairs \(\{\lambda, -\lambda\} \) for the real case and in quadruples \(\{\pm \lambda, \mp \lambda\} \) for the complex case \cite[Table 1]{18}. But (1.2) is a special one: its eigenvalues are real and come in pairs \(\{\lambda, -\lambda\} \).

Define the symmetric orthogonal matrix
\begin{equation}
J = \frac{1}{\sqrt{2}} \begin{bmatrix} I_n & I_n \\ I_n & -I_n \end{bmatrix},
\end{equation}
where \(I_n \) is the \(n \times n \) identity matrix. It can be verified that \(J^T J = J^2 = I_{2n} \) and
\begin{equation}
J^T H J = \begin{bmatrix} 0 & A - B \\ A + B & 0 \end{bmatrix},
\end{equation}
which is \(H \) in (1.1) with
\begin{equation}
K = A - B, \quad M = A + B.
\end{equation}
Hence the Hamiltonian matrix \(H \) in (1.2) and the matrix \(H \) in (1.1) with (1.5) are similar through \(J \), making it equivalent to solve the eigenvalue problem for one by the one for the other. In fact, both have the same eigenvalues with corresponding eigenvectors related by
\begin{equation}
\begin{bmatrix} y \\ x \end{bmatrix} = J^T \begin{bmatrix} u \\ v \end{bmatrix}, \quad \begin{bmatrix} u \\ v \end{bmatrix} = J \begin{bmatrix} y \\ x \end{bmatrix}.
\end{equation}
Furthermore, the positive definiteness of the matrix \(\begin{bmatrix} A & B \\ B & A \end{bmatrix} \) is equivalent to both \(K \) and \(M \) is positive definite since
\begin{equation}
J^T \begin{bmatrix} A & B \\ B & A \end{bmatrix} J = \begin{bmatrix} A + B & A - B \\ A - B & A + B \end{bmatrix}.
\end{equation}
By the equivalence of the eigenvalue problems (1.2) and (1.1), in this paper, we also refer to the eigenvalue problem (1.1) as the LR eigenvalue problem.

When both \(K \) and \(M \) are symmetric positive definite, it can be shown that the Hamiltonian matrix \(H \) in (1.2) and thus the matrix \(H \) in (1.1) have only nonzero real eigenvalues and their nonzero eigenvalues come in pairs \(\{\lambda, -\lambda\} \) (see section 2). In this case, Thouless \cite{31} showed that the smallest positive eigenvalue \(\lambda_{\min} \) admits the following minimization principle:
\begin{equation}
\lambda_{\min} = \min_{u, v} \varrho(u, v),
\end{equation}
where \(\varrho(u, v) \) is defined by
\begin{equation}
\varrho(u, v) = \frac{\begin{bmatrix} u^T \\ v \end{bmatrix}^T \begin{bmatrix} A & B \\ B & A \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}}{|u^T u - v^T v|}.
\end{equation}

\(^1\)In this paper we will focus very much on this case, except that the eigenvalue 0 is allowed; i.e., (1.2) has only real eigenvalues and some of them may be 0.
and the minimization is taken among all vectors u, v such that $u^T u - v^T v \neq 0$. By the similarity transformation (1.4) and using the relationships in (1.6), we have

$$
(1.10) \quad \varrho(u, v) \equiv \rho(x, y) \overset{\text{def}}{=} \frac{x^T K x + y^T M y}{2|x^T y|},
$$

and thus equivalently [34]

$$
(1.11) \quad \lambda_{\text{min}} = \min_{x, y} \rho(x, y),
$$

where the minimization is taken among all x and y such that either $x^T y \neq 0$ or $x^T y = 0$ but $x^T K x + y^T M y > 0$. This removes those x and y that annihilate both the numerator and the denominator from the domain. In particular $x = y = 0$ is excluded.

We will refer to both $\varrho(u, v)$ and $\rho(x, y)$ as the Thouless functional but in different forms. Although $\varrho(u, v) \equiv \rho(x, y)$ under (1.6), in this paper we primarily work with $\rho(x, y)$ to develop extensions of (1.11). Our contributions in this paper are threefold:

1. We extend the minimization principle (1.11) to include the case when one of K and M is singular and thus $\lambda_{\text{min}} = 0$ for which “min” needs to be replaced by “inf.”
2. We prove a subspace version of the minimization principle (1.8):

$$
(1.12) \quad \sum_{i=1}^{k} \lambda_i = \frac{1}{2} \inf_{U^T V = I_n} \text{trace}(U^T K U + V^T M V),
$$

where λ_i (1 \leq i \leq k) are the k smallest eigenvalues with the positive sign2 of H, and $U, V \in \mathbb{R}^{n \times k}$. Moreover, “inf” can be replaced by “min” if both K and M are definite.

Equation (1.12) suggests that

$$
(1.13) \quad \frac{1}{2} \text{trace}(U^T K U + V^T M V) \quad \text{subject to } U^T V = I_n
$$

is a proper subspace version of the Thouless functional in the form of $\rho(x, y)$. By exploiting the close relation through (1.6) between ρ and ϱ, we also obtain a subspace version of the minimization principle (1.8) in Theorem 3.4 for the original LR eigenvalue problem (1.2) and, at the same time, a proper subspace version of the Thouless functional in the form of $\varrho(u, v)$.

3. We prove that the ith eigenvalue with the positive sign of a structure-preserving projection matrix H_{sr} of H onto a pair of subspaces is no smaller than the corresponding λ_i of H. In many ways, H_{sr} plays the same role for the LR eigenvalue problem (1.1) as the Rayleigh quotient matrix for the symmetric eigenvalue problem [26].

2H has an even number of eigenvalues 0, if any. This happens when one of K and M is semidefinite, i.e., singular. Perturbing the singular one by ϵI and then letting $\epsilon \to 0^+$, we see that half of the 0’s come from some of the positive eigenvalues of perturbed H going to 0 from the right and the other half from the opposites of these positive eigenvalues going to 0 from the left. In recognizing this, we will associate the plus sign to half of the 0’s and the negative sign to the other half, and speak of H having n eigenvalues with the positive sign and n eigenvalues with the negative sign without causing any ambiguity. Our distinguishing $+0$ and -0 here is not unprecedented. In fact, it is rather beneficial sometimes in computations [12], and it is built into the IEEE floating point standard 754-1985 [1].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
These three theoretical contributions mirror the three well-known results for the symmetric eigenvalue problem, namely the minimization principle of the Rayleigh quotient, the trace minimization principle (a corollary of Wielandt’s theorem [30, p. 199]), and Cauchy’s interlacing inequalities (see, e.g., [26, 30]). They will be reviewed at the beginning of section 3.

The eigenvalue problem (1.1) is equivalent to the generalized eigenvalue problem for the matrix pencil

$$
A - \lambda B \equiv \begin{bmatrix} M \\ K \end{bmatrix} - \lambda \begin{bmatrix} 0 & I_n \\ I_n & 0 \end{bmatrix}.
$$

It is not hard to show that $A - \lambda B$ is diagonalizable (using Theorem 2.3, for example) if K and M are symmetric positive definite. So the results in [14, 23] apply. Also when K and M are symmetric positive definite, A is definite and thus $A - \lambda B$ is a symmetric definite pencil. Fischer’s min-max principle [30, p. 201] (naturally extended to the generalized eigenvalue problem [17, Appendix A]) is applicable. Later we will comment on what possible results may come out of such an approach.

This is the first paper of ours in a sequel on the subject. Here we focus on treating the theoretical aspect of the eigenvalue problem for H, and its numerical aspect will be the subject of study in [2]. The rest of this paper is organized as follows. In section 2, we review basic theoretical results about the eigenvalue problem (1.1) and then introduce the concept of a pair of deflating subspaces and its approximation properties. In section 3, we extend the minimization principle (1.11) by Thouless and Tsiper to include several eigenvalues. In section 4, we present Cauchy-like interlacing inequalities. In section 5, we present the deflation technique. For simplicity of exposition, most proofs are deferred to Appendices A–C. Concluding remarks are in section 6.

Throughout this paper, $\mathbb{R}^{n \times m}$ is the set of all $n \times m$ real matrices, $\mathbb{R}^n = \mathbb{R}^{n \times 1}$, and $\mathbb{R} = \mathbb{R}^1$. I_n (or simply I if its dimension is clear from the context) is the $n \times n$ identity matrix, and e_j is its jth column. The superscript “T” takes transpose only. We shall also adopt MATLAB-like convention to access the entries of vectors and matrices. $i : j$ is the set of integers from i to j inclusive. For a vector u and an matrix X, $u_{(j)}$ is u’s jth entry, $X_{(i,j)}$ is X’s (i,j)th entry; X’s submatrices $X_{(k:l,i:j)}$, $X_{(k:l,:)}$, and $X_{(:,i:j)}$ consist of intersections of row k to row ℓ and column i to column j, row k to row ℓ, and column i to column j, respectively. If X is nonsingular, $\kappa(X) \equiv \|X\|_2\|X^{-1}\|_2$ is its spectral condition number, where $\|\cdot\|_2$ denotes the ℓ_2-norm of a vector or the spectral norm of a matrix. For matrices or scalars X, both $\text{diag}(X_1,\ldots,X_k)$ and $X_1 \oplus \cdots \oplus X_k$ denote the same matrix

$$
\begin{bmatrix}
X_1 \\
\vdots \\
X_k
\end{bmatrix}.
$$

The assignments in (1.1) will be assumed, namely H is always defined that way for given $K, M \in \mathbb{R}^{n \times n}$ which are assumed by default to be symmetric positive semidefinite and one of which is definite, unless explicitly stated differently. This assumption is essential to our main contributions in this paper and its following one [2], although a few results do not require this. We will point them out along the way.
2. Basic theory and pair of deflating subspaces.

2.1. Basic theory. In this subsection, we discuss some basic theoretical results on the eigenvalue problem (1.1). Most results are likely known, but cannot be found in one place. They are collected here for the convenience of our later developments. Proofs of these results are straightforward.

Theorem 2.1.

1. Each nonzero \(\mu = \lambda^2 \) as an eigenvalue of \(KM \) (and \(MK \)) leads to two distinct eigenvalues of \(H \) and two corresponding eigenvectors \(z \).
2. The number of eigenvalues \(0 \) of \(H \) is twice as many as the number of eigenvalues \(0 \) of \(KM \) (or \(MK \)).

Remark 2.1. Theorem 2.1 is valid for all square matrices \(K \) and \(M \).

Suppose that \(K \) and \(M \) are symmetric positive semidefinite. Since \(KM = K^{1/2}M^{1/2}M \) has the same eigenvalues as \(K^{1/2}MK^{1/2} \), which is also symmetric positive semidefinite, all eigenvalues of \(KM \) are real and nonnegative. Denote these eigenvalues by \(\lambda_i^2 \) (1 ≤ \(i \) ≤ \(n \)) in ascending order, i.e.,

\[
0 \leq \lambda_1^2 \leq \lambda_2^2 \leq \cdots \leq \lambda_n^2,
\]

where all \(\lambda_i \geq 0 \) and thus \(0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \). The eigenvalues of \(MK \) are \(\lambda_i^2 \) (1 ≤ \(i \) ≤ \(n \)), too. Theorem 2.1 implies that the eigenvalues of \(H \) are

\[
\pm \lambda_i \quad \text{for} \quad i = 1, 2, \ldots, n.
\]

An immediate consequence of this is that the eigenvalues of \(H \) come in \(\pm \lambda \) pairs. Throughout this paper, we will stick to using \(\lambda_i^2 \) (1 ≤ \(i \) ≤ \(n \)) in ascending order as in (2.1) to denote the eigenvalues of \(KM \) (when \(K \) and \(M \) are symmetric positive semidefinite).

Set

\[
F = \begin{bmatrix} 0 & I_n \\ I_n & 0 \end{bmatrix},
\]

which is symmetric but indefinite. The matrix \(F \) induces an indefinite inner product on \(\mathbb{R}^{2n} \):

\[
(z_1, z_2)_F \overset{\text{def}}{=} z_1^T F z_2.
\]

The following theorem tells us some orthogonality properties among the eigenvectors of \(H \). It does not require that one of \(K \) and \(M \) are definite.

Theorem 2.2. Suppose \(K, M \in \mathbb{R}^{n \times n} \) are symmetric and positive semidefinite.

1. Let \((\alpha, z) \) be an eigenpair of \(H \), i.e., \(H z = \alpha z \) and \(z = [y^T x^T] \neq 0 \), where \(x, y \in \mathbb{R}^n \). Then \(\alpha (z, z)_F = 2 \alpha x^T y > 0 \) if \(\alpha \neq 0 \). In particular, this implies \((z, z)_F = 2x^T y \neq 0 \) if \(\alpha \neq 0 \).

2. Let \((\alpha_i, z_i) \) (1 ≤ \(i \) ≤ 2) be two eigenpairs of \(H \). Partition \(z_i = [y_i^T x_i^T] \neq 0 \), where \(x_i, y_i \in \mathbb{R}^n \).

 (a) If \(\alpha_1 \neq \alpha_2 \), then \((z_1, z_2)_F = y_1^T x_2 + x_1^T y_2 = 0 \).

 (b) If \(\alpha_1 \neq \pm \alpha_2 \), then \(y_1^T x_2 = x_1^T y_2 = 0 \).

More can be said when one of \(K \) and \(M \) are definite. For the sake of presentation, we shall always assume that \(M \) is definite or only provide proofs for definite \(M \) whenever one of \(K \) and \(M \) is required to be definite. Doing so loses no generality because the interchangeable roles played by \(K \) and \(M \) makes it rather straightforward
to create a version for the case when K is definite by simply swapping K and M in each of their appearances. The following theorem is critical to our theoretical developments.

Theorem 2.3. Suppose that M is definite. Then the following statements are true:

1. There exists a nonsingular $Y \in \mathbb{R}^{n \times n}$ such that
\begin{equation}
K = Y\Lambda^2Y^T, \quad M = XX^T,
\end{equation}
where $\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$ and $X = Y^{-T}$.
2. If K is also definite, then all $\lambda_i > 0$ and H is diagonalizable:
\begin{equation}
H \begin{bmatrix}
Y\Lambda & Y\Lambda \\
X & -X
\end{bmatrix} = \begin{bmatrix}
Y\Lambda & Y\Lambda \\
X & -X
\end{bmatrix} \begin{bmatrix}
A & 0 \\
0 & -A
\end{bmatrix}.
\end{equation}
3. H is not diagonalizable if and only if $\lambda_1 = 0$, which happens when and only when K is singular.
4. The ith column of $Z = [Y\Lambda \ X]$ is the eigenvector corresponding to λ_i, and it is unique if
 (a) λ_i is a simple eigenvalue of H, or
 (b) $i = 1$, $\lambda_1 = +0 < \lambda_2$. In this case, 0 is a double eigenvalue of H but there is only one eigenvector associated with it.
5. If $0 = \lambda_1 = \cdots = \lambda_\ell < \lambda_{\ell+1}$, then H’s Jordan canonical form is
\begin{equation}
\begin{bmatrix}
0 & 0 \\
1 & 0
\end{bmatrix} \oplus \cdots \oplus \begin{bmatrix}
0 & 0 \\
1 & 0
\end{bmatrix} \oplus \text{diag}(\lambda_{\ell+1}, -\lambda_{\ell+1}, \ldots, \lambda_n, -\lambda_n).
\end{equation}
Thus H has 0 as an eigenvalue of algebraic multiplicity 2ℓ with only ℓ linear independent eigenvectors which are the columns of $[X_{\ell}, I_{n-\ell}]$.

2.2. Pair of deflating subspaces. Let $U, V \subseteq \mathbb{R}^n$ be subspaces. We call $\{U, V\}$ a pair of deflating subspaces of $\{K, M\}$ if
\begin{equation}
KU \subseteq V \quad \text{and} \quad MV \subseteq U.
\end{equation}
This definition is essentially the same as the existing ones for the product eigenvalue problem [5, 8, 19]. Let $U \in \mathbb{R}^{n \times k}$ and $V \in \mathbb{R}^{n \times \ell}$ be the basis matrices for the subspaces U and V, respectively, where $\dim(U) = k$ and $\dim(V) = \ell$. Then (2.7) implies that there exist $K_R \in \mathbb{R}^{\ell \times k}$ and $M_R \in \mathbb{R}^{k \times \ell}$ such that
\begin{equation}
KU = VK_R, \quad MV = UM_R.
\end{equation}
Given U and V, both K_R and M_R are uniquely determined by respective equations in (2.8), but there are numerous ways to express them. In fact for any left generalized inverses U^- and V^- of U and V, respectively, i.e., $U^-U = I_k$ and $V^-V = I_\ell$,
\begin{equation}
K_R = V^-KU, \quad M_R = U^-MV.
\end{equation}
There are infinitely many left generalized inverses U^- and V^-. For example, two of them for U are
\begin{equation}
U^- = (U^TU)^{-1}U^T
\end{equation}
and

\begin{equation}
U^T = (V^T U)^{-1} V^T \quad \text{if } (V^T U)^{-1} \text{ exists.}
\end{equation}

But still \(K_n \) and \(M_n \) are unique. The left generalized inverse (2.10) will become important later in preserving symmetry in \(K \) and \(M \).

Define

\begin{equation}
H_n = \begin{bmatrix} 0 & K_n \\ M_n & 0 \end{bmatrix}.
\end{equation}

Then \(H_n \) is the restriction of \(H \) onto \(\mathcal{V} \oplus \mathcal{U} \) with respect to the basis matrix \(V \oplus U \):

\begin{equation}
\begin{bmatrix} 0 & K \\ M & 0 \end{bmatrix} \begin{bmatrix} V \\ U \end{bmatrix} = \begin{bmatrix} V \\ U \end{bmatrix} \begin{bmatrix} 0 & K_n \\ M_n & 0 \end{bmatrix}.
\end{equation}

This also says that \(\mathcal{V} \oplus \mathcal{U} \) is an invariant subspace of \(H \). On the other hand, every invariant subspace of \(H \) yields a pair of deflating subspaces of \(\{K, M\} \) as well.

Theorem 2.4.

1. If \(\{\mathcal{U}, \mathcal{V}\} \) is a pair of deflating subspaces of \(\{K, M\} \), then \(\mathcal{V} \oplus \mathcal{U} \) is an invariant subspace of \(H \).

2. Let \(Z \) be invariant subspace of \(H \), and let \(Z = [V_0 U_0] \) be a basis matrix of \(Z \), where \(V \in \mathbb{R}^{n \times \ell} \). Then \(\{\text{span}(U), \text{span}(V)\} \) is a pair of deflating subspaces of \(\{K, M\} \).

Proof.

1. It is a consequence of (2.12) that \(\mathcal{V} \oplus \mathcal{U} \) is an invariant subspace of \(H \).

2. There is a matrix \(D \) such that \(HZ = ZD \), which leads to \(KU = VD \) and \(MV = UD \). Thus (2.7) holds for \(\mathcal{U} = \text{span}(U) \) and \(\mathcal{V} = \text{span}(V) \).

The following theorem says a subset of eigenvalues and eigenvectors of \(H \) can be recovered from those of \(H_n \).

Theorem 2.5. Let \(K_n, M_n, \) and \(H_n \) be defined by (2.8) and (2.11). Then

\begin{equation}
H_n \hat{z} = \begin{bmatrix} 0 & K_n \\ M_n & 0 \end{bmatrix} \begin{bmatrix} \hat{y} \\ \hat{x} \end{bmatrix} = \lambda \begin{bmatrix} \hat{y} \\ \hat{x} \end{bmatrix} = \lambda \hat{z}
\end{equation}

implies (1.1) with \(x = U \hat{x} \) and \(y = V \hat{y} \), where \(\hat{z} = [\hat{y}, \hat{x}] \) conformally partitioned.

Proof. \(H_n \hat{z} = \lambda \hat{z} \) yields \(K_n \hat{x} = \lambda \hat{y} \) and \(M_n \hat{y} = \lambda \hat{x} \). Therefore \(KU \hat{x} = VK \hat{y} = V \lambda \hat{x} \) and \(MV \hat{y} = UM \hat{y} = \lambda U \hat{x} \), as was to be shown.

\(H_n \) in (2.11) inherits the block structure in \(H \) in (1.1): zero blocks remain zero blocks. But when \(K \) and \(M \) are symmetric, as in the RPA case, in general \(H_n \) may lose the symmetry property in its off-diagonal blocks \(K_n \) and \(M_n \), not to mention preserving the positive semidefiniteness of \(K \) and \(M \). Now let us propose a modification to \(H_n \) to overcome this potential loss. Suppose that \(W \overset{\text{def}}{=} U^T V \) is nonsingular and is factorized as \(W = W_1^T W_2 \) with both \(W_1 \) and \(W_2 \) being nonsingular, and define

\begin{equation}
H_{sr} = \begin{bmatrix} 0 & W_1^{-T} U^T K U W_1^{-1} \\ W_2^{-T} V^T M V W_2^{-1} & 0 \end{bmatrix}.
\end{equation}

Note that \(H_{sr} \) shares not only the block structure in \(H \) but also the symmetry and semidefiniteness in its off-diagonal blocks. Similar to Theorem 2.5, a subset of eigenvalues and eigenvectors of \(H \) can be recovered from those of \(H_{sr} \).
Theorem 2.6. Let H_{sr} be defined by (2.13). Then H_{sr} is the restriction of H onto $V \oplus U$ with respect to the basis matrix $VW_2^{-1} \oplus UW_1^{-1}$.

$$
H \begin{bmatrix}
VW_2^{-1} \\
UW_1^{-1}
\end{bmatrix} = \begin{bmatrix}
VW_2^{-1} \\
UW_1^{-1}
\end{bmatrix} H_{sr}.
$$

Consequently, $H_{sr} \hat{z} = \lambda \hat{z}$ implies (1.1) with $x = UW_1^{-1} \hat{x}$ and $y = VW_2^{-1} \hat{y}$, where $\hat{z} = \begin{bmatrix} \hat{x} \\ \hat{y} \end{bmatrix}$ is conformally partitioned.

Proof. The equations in (2.8) hold for some K_n and M. Thus

$$
U^T K U = (U^T V) K_n = W_1^T W_2 K_n,
$$

$$
V^T M V = (V^T U) M_n = W_2^T W_1 M_n,
$$

which gives

$$
W_1^{-1} U^T V K U W_2^{-1} = W_2 K_n W_1^{-1},
$$

$$
W_2^{-1} V^T M V W_2^{-1} = W_1 M_n W_2^{-1}.
$$

Now use (2.8) and (2.15) to get

$$
K(UW_1^{-1}) = V K_n W_1^{-1} = (VW_2^{-1})(W_2 K_n W_1^{-1}) = (VW_2^{-1})(W_1^{-1} U^T V K U W_2^{-1}),
$$

$$
M(VW_2^{-1}) = (UW_1^{-1})(W_2^{-1} V^T M V W_2^{-1}).
$$

They yield (2.14). Apply Theorem 2.5 to conclude the proof. \(\Box \)

The equations in (2.15) imply that when W is nonsingular, H_n and H_{sr} are similar:

$$
H_{sr} = \begin{bmatrix}
0 & W_2 K_n W_1^{-1} \\
W_1 M_n W_2^{-1} & 0
\end{bmatrix} = \begin{bmatrix}
W_2 \\
W_1
\end{bmatrix} H_n \begin{bmatrix}
W_2 \\
W_1
\end{bmatrix}^{-1},
$$

which is not at all obvious from (2.11) and (2.13).

In defining H_{sr} in (2.13), it is assumed that $W = U^T V$ is nonsingular. The following lemma shows that the assumption is satisfied for the LR eigenvalue problem in which we are interested.

Lemma 2.7. Suppose that one of K and M is definite. Let $\{U, V\}$ be a pair of deflating subspaces of $\{K, M\}$ with $\dim(U) = \dim(V) = k$, and let $U \in \mathbb{R}^{n \times k}$ and $V \in \mathbb{R}^{n \times k}$ be the basis matrices of the subspaces U and V, respectively. Then $U^T V$ is nonsingular.

Proof. The equations in (2.8) hold for some K_n and M_n. Thus

$$
U^T K U = U^T V K_n, \quad V^T M V = V^T U M_n.
$$

Suppose that M is definite. Then $V^T M V$ is definite and thus nonsingular; so $V^T U$ is nonsingular from the second equation. \(\Box \)

A trivial pair of deflating subspaces $\{U, V\}$ is when $U = V = \mathbb{R}^n$. In particular, for $U, V \in \mathbb{R}^{n \times n}$ satisfying $U^T V = I_n$, matrices

$$
H = \begin{bmatrix}
0 & K \\
M & 0
\end{bmatrix} \quad \text{and} \quad \begin{bmatrix}
0 & U^T K U \\
V^T M V & 0
\end{bmatrix}
$$
have the same eigenvalues. In fact, the two matrices in (2.17) are similar because of (2.12), and for the current case

\[
\begin{bmatrix}
V \\
U
\end{bmatrix}^{-1} = \begin{bmatrix}
U^T \\
V^T
\end{bmatrix}.
\]

Remark 2.2. For this subsection, our default assumption on \(K, M \in \mathbb{R}^{n \times n} \) is not required, except for Lemma 2.7.

2.3. Invariant properties of \(H_{SR} \)

In the previous subsection, \(H_{SR} \) was introduced as a structure-preserving projection of \(H \) onto a pair of deflating subspaces \(\{ \mathcal{U}, \mathcal{V} \} \). But its definition in (2.13) does not require \(\{ \mathcal{U}, \mathcal{V} \} \) being a pair of deflating subspaces. In fact, it is well defined so long as \(U^T V \) is nonsingular, where \(U, V \in \mathbb{R}^{n \times k} \) are the basis matrices of \(\mathcal{U} \subset \mathbb{R}^n \) and \(\mathcal{V} \subset \mathbb{R}^n \), respectively. This observation will become critically important in numerical computation, where \(H_{SR} \) is often defined for a pair of approximate deflating subspaces and will play the same role in the LR eigenvalue computation as the Rayleigh quotient matrix does for the symmetric eigenvalue computation [2].

As we just pointed out, we need the nonsingularity assumption on \(U^T V \) to define \(H_{SR} \). We note that this assumption is independent of the freedom in choosing basis matrices. Now we present a necessary and sufficient condition for this assumption in terms of canonical angles between subspaces. Recall that the canonical angles between \(\mathcal{U} \) and \(\mathcal{V} \) are defined to be [30, Definition 5.3 on p. 43]

\[
\arccos \sigma_i, \quad i = 1, 2, \ldots, k,
\]

where \(\sigma_i (1 \leq i \leq k) \) are the singular values of \((U^T U)^{-1/2} U^T V (V^T V)^{-1/2} \). Furthermore, we define the angle \(\angle (\mathcal{U}, \mathcal{V}) \) between \(\mathcal{U} \) and \(\mathcal{V} \) to be

\[
\angle (\mathcal{U}, \mathcal{V}) = \max_i \arccos(\sigma_i) = \arccos(\min_i \sigma_i).
\]

Note that the canonical angles \(\arccos \sigma_i \) and the angle \(\angle (\mathcal{U}, \mathcal{V}) \) are independent of the choices of basis matrices.

Lemma 2.8. Let \(U, V \in \mathbb{R}^{n \times k} \) be basis matrices of \(\mathcal{U}, \mathcal{V} \subset \mathbb{R}^n \), respectively.

1. \(U^T V \) is nonsingular if and only if \(\angle (\mathcal{U}, \mathcal{V}) < \pi/2 \).
2. If \(\angle (\mathcal{U}, \mathcal{V}) < \pi/2 \), then \(\mathbb{R}^n = \mathcal{U} \oplus \mathcal{V} \perp = \mathcal{V} \oplus \mathcal{U} \perp \), where \(\mathcal{U} \perp \) and \(\mathcal{V} \perp \) are the orthogonal complements of \(\mathcal{U} \) and \(\mathcal{V} \), respectively.

Proof. We use the notation in the definition of \(\angle (\mathcal{U}, \mathcal{V}) \) above. \(U^T V \) is nonsingular if and only if all \(1 \geq i \geq k \) \(\sigma_i > 0 \), which is equivalent to all \(\arccos(\sigma_i) < \pi/2 \). This proves item 1.

Suppose \(\angle (\mathcal{U}, \mathcal{V}) < \pi/2 \) and thus \(U^T V \) is nonsingular. Any \(x \in \mathbb{R}^n \) can be written as \(x = Px + (I - P)x \), where

\[
(2.18)
P = U(V^T U)^{-1} V^T.
\]

Evidently \(Px \in \mathcal{U} \). It can be verified that \(V^T (I - P) = 0 \), which implies \((I - P)x \in \mathcal{V} \perp \). Hence \(\mathbb{R}^n = \mathcal{U} \oplus \mathcal{V} \perp \). Furthermore, if \(x \in \mathcal{U} \) and \(x \in \mathcal{V} \perp \), then

\[
x = U \hat{x}, \quad 0 = V^T x = V^T U \hat{x},
\]

which implies \(\hat{x} = 0 \) and so must \(x = 0 \) because \(V^T U \) is nonsingular. This proves \(\mathbb{R}^n = \mathcal{U} \oplus \mathcal{V} \perp \). Similarly, \(\mathbb{R}^n = \mathcal{V} \oplus \mathcal{U} \perp \). \(\Box \)
Unique subspaces $\mathcal{U} = \text{span}(U)$ and $\mathcal{V} = \text{span}(V)$ are implied by the way H_{sr} is defined, and they satisfy $\angle(\mathcal{U}, \mathcal{V}) < \pi/2$. On the other hand, two subspaces \mathcal{U} and \mathcal{V} satisfying $\angle(\mathcal{U}, \mathcal{V}) < \pi/2$ lead to (infinitely) many H_{sr}, due to the following two nonunique choices:

$$
\begin{align*}
1. \text{Factorization } W &= W_1^T W_2 \text{ is not unique.} \\
2. \text{Basis matrices } U \text{ and } V \text{ are not unique.}
\end{align*}
$$

In the next theorem, we present two invariant properties of H_{sr} with respect to these two nonunique choices. The properties are important in speaking about eigenvalue and eigenvector approximations from a pair of approximate deflating subspaces in [2].

Theorem 2.9. Let $\mathcal{U}, \mathcal{V} \subset \mathbb{R}^n$ be two subspaces of dimension k such that $\angle(\mathcal{U}, \mathcal{V}) < \pi/2$. We have the following invariant properties of H_{sr}:

1. The eigenvalues of H_{sr} defined by (2.13) are invariant with respect to any of the nonuniqueness listed in (2.19).
2. For any invariant subspace \mathcal{E} of H_{sr},

$$
(2.20) \quad \left\{ \begin{bmatrix} W_2^{-1} & U^{-1} \end{bmatrix} \hat{\mathbf{z}} : \hat{\mathbf{z}} \in \mathcal{E} \right\}
$$

is invariant with respect to any of the nonuniqueness listed in (2.19). By which we mean for any two realizations H_0 and H_1 of H_{sr} and the subspace (2.20) obtained from an invariant subspace \mathcal{E}_0 of H_0, there exists an invariant subspace \mathcal{E}_1 of H_1 which produces the same subspace (2.20). In particular, if \mathcal{E} has dimension 1, this gives an invariant property on the eigenvectors of H_{sr}.

Proof. We first show the invariant properties with respect to different factorizations $W = W_1^T W_2$. To this end, we note that $H_1 \overset{\text{def}}{=} H_{sr}$ with $W = W_1^T W_2$ and $H_0 \overset{\text{def}}{=} H_{sr}$ with $W = I_k^T \cdot W$ are similar:

$$
\begin{bmatrix} W_1^{-T} & W_1 \end{bmatrix}^{-1} H_1 \begin{bmatrix} W_1^{-T} & W_1 \end{bmatrix} = \begin{bmatrix} W_1^T & W_1^{-1} \end{bmatrix} H_1 \begin{bmatrix} W_1^T & W_1 \end{bmatrix} = H_0.
$$

Next we verify the invariant properties with respect to different choices of basis matrices. To this end, it suffices to verify the invariant properties under the following substitutions:

$$
(2.21) \quad UR \leftarrow U, \quad VS \leftarrow V, \quad W_1 R \leftarrow W_1, \quad W_2 S \leftarrow W_2,
$$

where $R, S \in \mathbb{R}^{k \times k}$ are nonsingular because we have just proved the properties with respect to different decompositions of W. The verification is straightforward because H_{sr} and

$$
\begin{bmatrix} VW_2^{-1} & UW_1^{-1} \end{bmatrix}
$$

do not change under the substitutions (2.21). \qed

Remark 2.3. For this subsection, our default assumption on $K, M \in \mathbb{R}^{n \times n}$ is not required.
3. Minimization principles. We recall three well-known results for a symmetric matrix $\Xi \in \mathbb{R}^{m \times m}$. Denote by θ_i, $1 \leq i \leq m$, Ξ’s eigenvalues in ascending order. The first well-known result is the following minimization principle for Ξ’s smallest eigenvalue θ_1:

\begin{equation}
\theta_1 = \min_{x} \frac{x^T \Xi x}{x^T x},
\end{equation}

The trace (or subspace) version of (3.1), the second well-known result, is

\begin{equation}
\sum_{i=1}^{k} \theta_i = \min_{U \in \mathbb{R}^{m \times k}, U^T U = I_k} \text{trace}(U^T \Xi U),
\end{equation}

which is a corollary of Wielandt’s theorem [30, p. 199]. Furthermore, given any $U \in \mathbb{R}^{n \times k}$ such that $U^T U = I_k$, denote by μ_i, $1 \leq i \leq k$, the eigenvalues of the projection matrix $U^T \Xi U$ in ascending order. We have Cauchy’s interlacing inequalities—the third well-known result:

\begin{equation}
\theta_i \leq \mu_i \leq \theta_i + m - k \quad \text{for } 1 \leq k.
\end{equation}

The proofs of these well-known theoretical results can be found, for example, in [6, 26, 30]. They are crucial to the establishment of efficient numerical methods for the symmetric eigenvalue problem, and largely responsible for why the symmetric eigenvalue problems are regarded as nice eigenvalue problems in a wide range of applications.

In this and the next sections, we establish analogues of these results for the LR eigenvalue problem (1.1). The following theorem is an analogue of the minimization principle (3.1) for the symmetric matrix Ξ. It is essentially (1.11) due to Tsiper [33, 34] who deduced it from (1.8) due to Thouless [31], except we allow one of K and M to be singular. We note that Theorem 3.2 presents a subspace version of Theorem 3.1. Although Theorem 3.1 is a corollary of Theorem 3.2, we decide to give a short proof because the proof of Theorem 3.2 is long and is deferred to Appendix A.

Theorem 3.1. Suppose that one of $K, M \in \mathbb{R}^{n \times n}$ is definite. Then we have

\begin{equation}
\lambda_1 = \inf_{x,y} \rho(x,y),
\end{equation}

where the infimum is taken over all $x, y \in \mathbb{R}^n$ such that $x^T y \neq 0$. Moreover, “inf” can be replaced by “min” if and only if both K and M are definite. When they are definite, the optimal argument pair (x,y) gives rise to an eigenvector $z = [y]_x$ of H associated with λ_1.

Proof. Note that $\rho(x,y) \geq 0$ for any x and y. If K is singular, then $\lambda_1 = +0$. Pick $x \neq 0$ such that $Kx = 0$. Then $x^T Mx > 0$ since one of K and M is assumed definite. We have

\begin{equation}
\rho(x,ex) = |x| x^T Mx/(2|x^T x|) \to 0 \quad \text{as} \quad \epsilon \to 0.
\end{equation}

This is (3.4) for the case. We now show that “inf” cannot be replaced by “min.” Suppose there were x and y such that $x^T y \neq 0$ and $\rho(x,y) = 0$. We note that $\rho(x,y) = 0$ and $x^T y \neq 0$ imply $x^T Kx = y^T My = 0$, which in turn implies $Kx = My = 0$, contradicting that one of K and M is definite.
Suppose \(K \) and \(M \) are definite. Then \(\lambda_1 > 0 \) and the equations in (2.4) hold for some nonsingular \(Y \in \mathbb{R}^{n \times n} \) and \(X = Y^{-T} \). We have
\[
\min_{x,y} \frac{x^T K x + y^T M y}{2|x^T y|} = \min_{x,y} \frac{x^T A^2 y^T x + y^T Y^{-1} y}{2|x^T y|}
\]
\[
= \min_{\tilde{x}, \tilde{y}} \frac{\tilde{x}^T A^2 \tilde{x} + \tilde{y}^T \tilde{y}}{2|\tilde{x}^T \tilde{y}|}
\]
\[
\geq \min_{\tilde{x}, \tilde{y}} \frac{2 \sum_i \lambda_i |\tilde{x}(i)\tilde{y}(i)|}{2|\sum_i \tilde{x}(i)\tilde{y}(i)|}
\]
(3.5)
\[
\geq \lambda_1,
\]
(3.6)
where \(\tilde{x} = Y^T x \) and \(\tilde{y} = Y^{-1} y \). Suppose \(0 < \lambda_1 = \cdots = \lambda_{\ell} < \lambda_{\ell+1} \leq \cdots \leq \lambda_n \). Both equality signs in (3.5) and (3.6) hold if and only if
\[
\tilde{x}(i) \lambda_i = \tilde{y}(i) \quad \text{for } 1 \leq i \leq \ell,
\]
\[
\tilde{x}(i) = \tilde{y}(i) = 0 \quad \text{for } \ell < i \leq n,
\]
i.e., \(\tilde{y} = A \tilde{x} \) and \(\tilde{x}((\ell+1:n)) = \tilde{y}((\ell+1:n)) = 0 \). So for their corresponding optimal argument pair \((x, y)\),
\[
K x = K Y^{-T} \tilde{x} = K X \tilde{x} = Y A^2 \tilde{x} = Y A \tilde{y} = \lambda_1 Y \tilde{y} = \lambda_1 y,
\]
and similarly \(M y = \lambda_1 x \). \hfill \Box

Remark 3.1. Equation (3.4) is actually true even if both \(K \) and \(M \) are singular (but still positive semidefinite, of course). There are two cases.

1. Both \(K \) and \(M \) are singular and their kernels are not orthogonal to each other; i.e., there are nonzero vectors \(x \) and \(y \) such that \(K x = M y = 0 \) and \(x^T y \neq 0 \). For such a case, we have
\[
\lambda_1 = \min_{x,y} \rho(x, y).
\]
(3.7)

2. Both \(K \) and \(M \) are singular but their kernels are orthogonal to each other. For such a case, we have (3.4), but “\(\inf \)” cannot be replaced by “\(\min \)” Here is why: Since \(K \) is singular, we pick \(x \neq 0 \) such that \(K x = 0 \). Then \(M x \neq 0 \) because the kernels of \(K \) and \(M \) are orthogonal to each other. So \(x^T M = (M x)^T \neq 0 \), which says that at least one of the columns of \(M \) is not orthogonal to \(x \), and we take \(y \) to be one such column. Now we see
\[
\rho(x, \epsilon y) = |\epsilon| y^T M y / (2|x^T y|) \to 0 \quad \text{as } \epsilon \to 0.
\]
This gives (3.4) since \(\rho(\cdot, \cdot) \geq 0 \) always. To see that “\(\inf \)” cannot be replaced by “\(\min \),” we assume there were \(x \) and \(y \) such that \(x^T y \neq 0 \) and \(\rho(x, y) = 0 \). We note that \(\rho(x, y) = 0 \) and \(x^T y \neq 0 \) imply \(x^T K x = y^T M y = 0 \), which in turn implies \(K x = M y = 0 \), contradicting the assumption that the kernels of \(K \) and \(M \) are orthogonal to each other.

Remark 3.2. The first part of Theorem 3.1—(3.4) for positive definite \(K \) and \(M \)—can also be deduced from the equivalence between the eigenvalue problem (1.1) and the one in (1.14). Suppose that both \(K \) and \(M \) are definite; so is \(A \) in (1.14). Note that \(\lambda_1^{-1} \) and \(-\lambda_1^{-1} \) are the largest and smallest eigenvalues of the definite pencil \(B - \lambda A \), respectively, and thus for any \(0 \neq z = [y \ x] \in \mathbb{R}^{2n} \),
\[
\frac{z^T B z}{z^T A z} \in [-\lambda_1^{-1}, \lambda_1^{-1}] \quad \text{implies that} \quad \frac{z^T A z}{z^T B z} \in (-\infty, -\lambda_1] \cup [\lambda_1, \infty).
\]
(3.8)
Since $\pm \lambda_j^{-1}$ are eigenvalues of $B - \lambda A$ and thus attainable by $z^T B z / z^T A z$ for some z, so are $\pm \lambda_1$ by $z^T A z / z^T B z$ for some z. By (3.8) and that $z^T A z > 0$ for $z \neq 0$, we have
\[
\lambda_1 = \min_{z \neq 0} \left| \frac{z^T A z}{z^T B z} \right| = \min_{z \neq 0} \frac{x^T K x + y^T M y}{2|x^T y|},
\]
which is (3.4) (with “inf” replaced by “min”) for positive definite K and M. One may also use Fischer’s min-max principle [30, p. 201] on $B - \lambda A$ to deduce expressions for other λ_j^{-1}:
\[
\lambda_j^{-1} = \max_{S_j} \min_{0 \neq z \in S_j} \frac{z^T B z}{z^T A z} = \max_{S_j} \min_{0 \neq z \in S_j} \frac{2x^T y}{x^T K x + y^T M y},
\]
and
\[
\lambda_j^{-1} = \min_{S_{n-j+1}} \max_{0 \neq z \in S_{n-j+1}} \frac{z^T B z}{z^T A z} = \min_{S_{n-j+1}} \max_{0 \neq z \in S_{n-j+1}} \frac{2x^T y}{x^T K x + y^T M y},
\]
where S_k is a subspace of \mathbb{R}^n of dimension k. But it seems that they do not yield any min-max principle of λ_j in terms of $(x^T K x + y^T M y)/(2x^T y)$ without additional constraints because it can be positive, 0, and negative. However, by enforcing $x^T y > 0$, we can obtain some min-max principle for λ_j using the results in [15].

Our next theorem presents a subspace version of Theorem 3.1. It is the reason we mentioned in section 1 that the expression in (1.13) can be regarded as a proper subspace version of the Thouless functional in the form of $\rho(\cdot, \cdot)$.

Theorem 3.2. Suppose that one of $K, M \in \mathbb{R}^{n \times n}$ is definite. Then we have
\[
\sum_{i=1}^{k} \lambda_i = \inf_{U^T V = I_k} \text{trace}(U^T K U + V^T M V).
\]

Moreover, “inf” can be replaced by “min” if and only if both K and M are definite. When they are definite and if also $\lambda_k < \lambda_{k+1}$, then for any U and V that attain the minimum, $\{\text{span}(U), \text{span}(V)\}$ is a pair of deflating subspaces of $\{K, M\}$ and the corresponding H_{sa} (and H_{sa}, too) has eigenvalues $\pm \lambda_i$ (1 $\leq i \leq k$).

Proof. The proof is deferred to Appendix A.

Corollary 3.3. Suppose that one of $K, M \in \mathbb{R}^{n \times n}$ is definite. Then
\[
\sum_{i=1}^{n} \lambda_i = \inf_{U^T V = I_n} \text{trace}(U^T K U + V^T M V).
\]

Remark 3.3. In (3.2), which is for the symmetric eigenvalue problem of $\Xi = \Xi^T \in \mathbb{R}^{m \times m}$, if $k = m$, then
\[
\sum_{i=1}^{m} \theta_i = \text{trace}(U^T \Xi U),
\]
regardless of $U \in \mathbb{R}^{m \times m}$ so long as $U^T U = I_m$. There is certainly a strong resemblance between (3.11) and (3.12), but a fundamental difference, too. That is that “inf” has to be there in (3.11). Without “inf,” (3.11) becomes
\[
\sum_{i=1}^{n} \lambda_i \leq \frac{1}{2} \text{trace}(U^T K U + V^T M V)
\]
for any two $U, V \in \mathbb{R}^{n \times n}$ satisfying $U^T V = I_n$. For example, consider

$$K = \begin{bmatrix} \lambda_1^2 \\ \lambda_2^2 \end{bmatrix}, \quad M = I_2, \quad U = \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}, \quad V = U^{-T} = \begin{bmatrix} \xi_1^{-1} \\ \xi_2^{-1} \end{bmatrix},$$

where $0 < \lambda_1 \leq \lambda_2$ and $0 \neq \xi_i \in \mathbb{R}$. Then we have

$$\frac{1}{2} \text{trace}(U^T KU + V^T MV) = \sum_{i=1}^2 \frac{\xi_i^2 \lambda_1^2 + \lambda_i^{-2}}{2} \geq \sum_{i=1}^2 \lambda_i,$$

where the equality sign holds if and only if $|\xi_i| = 1/\sqrt{\lambda_i}$ for $i = 1, 2$.

Exploiting the close relation through (1.6) between the two different forms of the Thouless functionals $q(\cdot, \cdot)$ and $\rho(\cdot, \cdot)$, we have by Theorem 3.2 the following theorem. It suggests that

$$(3.14) \quad \frac{1}{2} \text{trace} \left(\begin{bmatrix} U \\ V \end{bmatrix}^T \begin{bmatrix} A & B \\ B & A \end{bmatrix} \begin{bmatrix} U \\ V \end{bmatrix} \right) \quad \text{subject to} \quad U^T U - V^T V = 2I_k, \quad U^T V = V^T U$$

is a proper subspace version of the Thouless functional in the form of $q(\cdot, \cdot)$.

Theorem 3.4. Suppose that A and B are $n \times n$ real symmetric matrices and that $A + B$ and $A - B$ are positive semidefinite and one of them is definite. Then we have

$$(3.15) \quad \sum_{i=1}^k \lambda_i = \frac{1}{2} \inf_{U^T U - V^T V = 2I_k} \text{trace} \left(\begin{bmatrix} U \\ V \end{bmatrix}^T \begin{bmatrix} A & B \\ B & A \end{bmatrix} \begin{bmatrix} U \\ V \end{bmatrix} \right).$$

Moreover, “inf” can be replaced by “min” if and only if both $A \pm B$ are definite.

Proof. Assume the assignments in (1.5) for K and M. We have by (1.7)

$$\begin{bmatrix} U \\ V \end{bmatrix}^T \begin{bmatrix} A & B \\ B & A \end{bmatrix} \begin{bmatrix} U \\ V \end{bmatrix} = \begin{bmatrix} \hat{V} \\ \hat{U} \end{bmatrix}^T \begin{bmatrix} M \\ K \end{bmatrix} \begin{bmatrix} \hat{V} \\ \hat{U} \end{bmatrix} = \hat{U}^T K \hat{U} + \hat{V}^T M \hat{V},$$

where

$$\begin{bmatrix} \hat{V} \\ \hat{U} \end{bmatrix} = J^T \begin{bmatrix} U \\ V \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} U + V \\ U - V \end{bmatrix},$$

and J is given by (1.3). Therefore,

$$(3.16) \quad \inf_{U^T V = I_k} \text{trace}(\hat{U}^T K \hat{U} + \hat{V}^T M \hat{V})$$

$$= \inf_{(U - V)^T (U + V) = 2I_k} \text{trace} \left(\begin{bmatrix} U \\ V \end{bmatrix}^T \begin{bmatrix} A & B \\ B & A \end{bmatrix} \begin{bmatrix} U \\ V \end{bmatrix} \right).$$

We claim

$$(3.17) \quad (U - V)^T (U + V) = 2I_k \quad \Leftrightarrow \quad U^T U - V^T V = 2I_k \quad \text{and} \quad U^T V = V^T U.$$

This is because $(U - V)^T (U + V) = 2I_k$ and its transpose version give

$$(3.18a) \quad U^T U + U^T V - V^T U - V^T V = 2I_k,$$

$$(3.18b) \quad U^T U + V^T U - U^T V - V^T V = 2I_k.$$

Add both equations in (3.18) to get $U^T U - V^T V = 2I_k$ and subtract one from the other to get $U^T V = V^T U$. That the right-hand side in (3.17) implies its left-hand side can be seen from either of the equations in (3.18). Equation (3.15) is now a consequence of Theorem 3.2, (3.16), and (3.17). \qed
4. Cauchy-like interlacing inequalities. In the following theorem, we obtain inequalities that can be regarded as an extension of Cauchy’s interlacing inequalities (3.3).

Theorem 4.1. Suppose that one of $K, M \in \mathbb{R}^{n \times n}$ is definite. Let $U, V \in \mathbb{R}^{n \times k}$ such that $U^T V$ is nonsingular. Write $W = U^T V = W_1^T W_2$, where $W_i \in \mathbb{R}^{k \times k}$ are nonsingular, and define H_{sr} by (2.13). Denote by $\pm \mu_i (1 \leq i \leq k)$ the eigenvalues of H_{sr}, where $0 \leq \mu_1 \leq \cdots \leq \mu_k$. Then

\begin{equation}
\lambda_i \leq \mu_i \leq \frac{\sqrt{\min\{\kappa(K), \kappa(M)\}}}{\cos \angle(\mathcal{U}, \mathcal{V})} \lambda_{i+n-k} \quad \text{for } 1 \leq i \leq k,
\end{equation}

where $\mathcal{U} = \text{span}(U)$ and $\mathcal{V} = \text{span}(V)$, and $\kappa(K)$ and $\kappa(M)$ are spectral condition numbers. Furthermore, if $\lambda_k < \lambda_{k+1}$ and $\lambda_i = \mu_i$ for $1 \leq i \leq k$, then

1. $\mathcal{U} = \text{span}(X_{(1:k,1)})$ when M is definite, where X is as in Theorem 2.3;
2. $\{\mathcal{U}, \mathcal{V}\}$ is a pair of deflating subspaces of $\{K, M\}$ corresponding to the eigenvalues $\pm \lambda_i (1 \leq i \leq k)$ of H when both K and M are definite.

Proof. The proof is deferred to Appendix B. \square

Remark 4.1. When K and M are definite, then the LR eigenvalue problem (1.1) and the one in (1.14) are equivalent. Let

\[Z = \begin{bmatrix} V W_2^{-1} & -U W_1^{-1} \end{bmatrix}, \]

then we have

\begin{equation}
Z^T A Z = \begin{bmatrix} W_2^{-T} V^T M V W_2^{-1} & -W_1^{-T} U^T K U W_1^{-1} \end{bmatrix}, \quad Z^T B Z = \begin{bmatrix} 0 & I_k \\ I_k & 0 \end{bmatrix}.
\end{equation}

The eigenvalues of H_{sr} are the same as those for the pencil $Z^T A Z - \lambda Z^T B Z$. Apply Cauchy’s interlacing inequalities (extended for the generalized eigenvalue problem) to $B - \lambda A$ and $Z^T B Z - \lambda Z^T A Z$ to get

\[\lambda_i^{-1} \geq \mu_i^{-1} \geq \begin{cases} \lambda_{i+2n-2k}^{-1} & \text{if } i + 2n - 2k \leq n, \\ 0 & \text{otherwise.} \end{cases} \]

Equivalently

\begin{equation}
\lambda_i \leq \mu_i \leq \lambda_{i+2n-2k} \quad \text{for } 1 \leq i \leq k,
\end{equation}

where we assign $\lambda_j = \infty$ for $j > n$. Inequalities in (4.3) remain valid for the case when only one of K and M are definite, too. Suppose now that K is singular. Let $K(\epsilon) = K + \epsilon I_n$ which is definite for any $\epsilon > 0$. Define accordingly $H(\epsilon)$ and its eigenvalues $\pm \lambda_i(\epsilon)$, $H_{sr}(\epsilon)$ and its eigenvalues $\pm \mu_i(\epsilon)$. By what we just proved, we have

\begin{equation}
\lambda_i(\epsilon) \leq \mu_i(\epsilon) \leq \lambda_{i+2n-2k}(\epsilon) \quad \text{for } 1 \leq i \leq k,
\end{equation}

where $\lambda_j(\epsilon) = \infty$ for $j > n$. From the definition of H_{sr} above, we see that $\lim_{\epsilon \to 0^+} H_{sr}(\epsilon)$ exists and the limit is the H_{sr}. Since eigenvalues are continuous functions of matrix entries, letting $\epsilon \to 0^+$ in (4.4) yields (4.3).

\[^3 \text{A similar statement for the case in which } K \text{ is definite (but } M \text{ is semidefinite) can be made, noting that the decompositions in (2.4) no longer hold but that similar decompositions exist.} \]
The second inequality in (4.3) looks more elegant than those in (4.1) but not without the price that some of them could be ∞. Later, in Remark 4.2, we will present an example to show the factor $\frac{\cos \angle(U, V)}{\sin \angle(U, V)}$ in (4.1) cannot be removed.

Corollary 4.2. Suppose that one of K, $M \in \mathbb{R}^{n \times n}$ is definite. Let K_p and M_p be $k \times k$ principal submatrices of K and M, extracted with the same row and column indices for both. Denote by $\pm \mu_i$ ($1 \leq i \leq k$) the eigenvalues of $[\begin{bmatrix} 0 & K_p \end{bmatrix}]$, where $0 \leq \mu_1 \leq \cdots \leq \mu_k$. Then

$$
\lambda_i \leq \mu_i \leq \sqrt{\min \{\kappa(K), \kappa(M)\}} \lambda_{i+n-k} \quad \text{for } 1 \leq i \leq k.
$$

Proof. Let i_1, i_2, \ldots, i_k be the row and column indices of K and M that give K_p and M_p, and let $U = (e_{i_1}, e_{i_2}, \ldots, e_{i_k}) \in \mathbb{R}^{n \times k}$. Then $K_p = U^T K U$ and $M_p = U^T M U$. Apply Theorem 4.1 with $V = U$ to conclude the proof. \(\square \)

Remark 4.2. Inequalities (4.1), (4.3), and (4.5) mirror Cauchy’s interlacing inequalities (3.3). But the upper bounds on μ_i by (4.1) and (4.5) are more complicated. The following example shows that the factor $\frac{\cos \angle(U, V)}{\sin \angle(U, V)}$ in (4.1), in general, cannot be removed. Consider

$$
K = \begin{bmatrix}
\alpha^2 & 0 \\
0 & \beta^2
\end{bmatrix}, \quad M = I_2, \quad U = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad V = \begin{bmatrix} t \\ 1 \end{bmatrix},
$$

where $0 < \alpha < \beta$ and $t = \tan \angle(U, V)$. Then the positive eigenvalue of H_{st} is

$$
\mu_1 = \sqrt{U^T K U V^T M V} = \beta \sqrt{1 + t^2} = \frac{\lambda_2}{\cos \angle(U, V)}.
$$

An application of (4.3) leads to $\alpha = \lambda_1 \leq \mu_1 \leq \lambda_{1+n-k} = \infty$, in which the upper bound $\lambda_{1+n-k} = \infty$ does not provide any useful information. We suspect that \(\sqrt{\min \{\kappa(K), \kappa(M)\}} \) in (4.1) and (4.5) could be removed or at least be replaceable by something that does not depend on the condition numbers, but we have no proof, except for the special case as detailed in the following theorem.

Theorem 4.3. Under the assumptions of Theorem 4.1, if either $UU \subseteq MV$ when M is definite or $V \subseteq Ku$ when K is definite, then

$$
\lambda_i \leq \mu_i \leq \lambda_{i+n-k} \quad \text{for } 1 \leq i \leq k.
$$

Proof. We will prove (4.6), assuming M is definite and $UU \subseteq MV$. Since M is definite, $\dim(MV)^\perp = n-k$, where $(MV)^\perp$ is the orthogonal complement of MV. Let $V_\perp \in \mathbb{R}^{n \times (n-k)}$ be a basis matrix of $(MV)^\perp$. Then $V_\perp^T MV = 0$ and also $U^T V_\perp = 0$ because $UU \subseteq MV$. Let

$$
U = \begin{bmatrix} UW_1^{-1}, MV_\perp (V_\perp^T MV_\perp)^{-1/2} \end{bmatrix}, \quad V = \begin{bmatrix} VW_2^{-1}, V_\perp(V_\perp^T MV_\perp)^{-1/2} \end{bmatrix}.
$$

It can be verified that $U^T V = I_n$ (which implies $V^T U = I_n$ also) and

$$
\tilde{M} \overset{\text{def}}{=} V^T M V = \begin{bmatrix} W_2^{-1} V^T T M V W_2^{-1} & \, \, \, I_{n-k} \end{bmatrix}.
$$

Let $\hat{K} = U^T K U$. Notice that

$$
\text{eig}(\hat{K} \tilde{M}) = \text{eig}(\tilde{M}^{1/2} \hat{K} \tilde{M}^{1/2}) = \{ \lambda_i^2, \, i = 1, 2, \ldots, n \}.
$$
where $\text{eig}()$ is the set of eigenvalues of a matrix. The $k \times k$ leading principal matrix of $\hat{M}^{1/2} \hat{K} \hat{M}^{1/2}$ is

$$
(W_2^{-T}V^TMVW_2^{-1})^{1/2}(W_1^{-T}U^TKUW_1^{-1})(W_2^{-T}V^TMVW_2^{-1})^{1/2},
$$

whose eigenvalues are μ_i^2, $i = 1, 2, \ldots, k$. Apply Cauchy’s interlacing inequalities to $\hat{M}^{1/2} \hat{K} \hat{M}^{1/2}$ and its $k \times k$ leading principal matrix (4.7) to get

$$
\lambda_i^2 \leq \mu_i^2 \leq \lambda_{i+n-k}^2 \quad \text{for } 1 \leq i \leq k,
$$

which yields (4.6).

5. Deflation. Deflation is a commonly used technique in solving eigenvalue problems. The basic idea is to avoid computing these eigenpairs that have been already computed to a prescribed accuracy, and it is accomplished by orthogonalizing current vectors against all already converged eigenvectors. Return to the symmetric already computed to a prescribed accuracy, and it is accomplished by orthogonalizing

$$
\big(\frac{1}{\cos \angle (U, V)}\big) \lambda_{i+n-k} \quad \text{for } 1 \leq i \leq k.
$$

Moreover, “\inf” can be replaced by “\min” if and only if $\lambda_{l+1} > 0$. If also $0 < \lambda_{l+1}$ and $\lambda_{l+k} < \lambda_{l+k+1}$, then for any U and V that attain the minimum, \{span(U), span(V)\} is a pair of deflating subspaces of $\{K, M\}$ corresponding to the eigenvalues $\pm \lambda_{l+i}$, $1 \leq i \leq k$ of H.

2. Let $U, V \in \mathbb{R}^{n \times k}$ such that $U^T V$ is nonsingular, $U^T Y_1 = 0$ and $V^T X_1 = 0$. Write $W = U^T V = W_1^T W_2$, where $W_i \in \mathbb{R}^{k \times k}$ are nonsingular, and define H_{sr} by (2.13). Denote by $\pm \mu_i$ ($1 \leq i \leq k$) the eigenvalues of H_{sr}, where $0 \leq \mu_1 \leq \cdots \leq \mu_k$. Then

$$
\lambda_{l+i} \leq \mu_i \leq \frac{\sqrt{\min\{\kappa(K), \kappa(M)\}}}{\cos \angle (U, V)} \lambda_{i+n-k} \quad \text{for } 1 \leq i \leq k.
$$

If also $0 < \lambda_{l+1}$ and $\lambda_{l+k} < \lambda_{l+k+1}$ and if $\lambda_{l+i} = \mu_i$ for $1 \leq i \leq k$, then \{span(U), span(V)\} is a pair of deflating subspaces of $\{K, M\}$ corresponding to the eigenvalues $\pm \lambda_{l+i}$, $1 \leq i \leq k$ of H.

Proof. See Appendix C for the proof.

6. Concluding remarks. We have obtained new minimization principles and Cauchy-like interlacing inequalities for the LR eigenvalue problem. Also obtained is a structure-preserving projection H_{sr} of H onto a pair of subspaces. The role of H_{sr} for the LR eigenvalue problem (1.1) in many ways is the same as that of the Rayleigh
quotient matrix for the symmetric eigenvalue problem. These new results mirror the
three well-known results for the eigenvalue problem of a real symmetric matrix. They
lay the foundation for our numerical investigation in the sequel to this paper [2], where
new efficient numerical methods will be devised for computing the first few smallest
eigenvalues with the positive sign and corresponding eigenvectors simultaneously.

Although, throughout this paper and its sequel, it is assumed that both K and
M are real matrices, all results are valid for Hermitian positive semidefinite K and
M with one of them being definite after minor changes: replacing all \mathbb{R} by \mathbb{C} and all
superscripts $(\cdot)^T$ by complex conjugate transposes $(\cdot)^H$.

The second inequalities in Theorem 4.1 and Corollary 4.2 that mirror Cauchy's
interlacing inequalities for the standard symmetric eigenvalue problem are not as
satisfactory as we would like. We demonstrated that the factor $[\cos \angle(U,V)]^{-1}$ is, in
general, not removable, but the factor $\sqrt{\min\{\kappa(K),\kappa(M)\}}$ could be an artifact of our
proof and thus might be removed. No proof has been found yet.

Appendix A. Proof of Theorem 3.2.

Lemma A.1. Let $\omega_i \in \mathbb{R}$ for $1 \leq i \leq n$ be arranged in ascending order, i.e.,
$\omega_1 \leq \omega_2 \leq \cdots \leq \omega_n$, and let $\alpha_i \in \mathbb{R}$ for $1 \leq i \leq n$. Denote by α_i^k ($i = 1, \ldots, n$) the
rearrangement of α_i ($i = 1, \ldots, n$) in descending order, i.e., $\alpha_1^k \geq \cdots \geq \alpha_n^k$. Then
\begin{equation}
\sum_{i=1}^n \omega_i \alpha_i \geq \sum_{i=1}^n \omega_i \alpha_i^k.
\end{equation}

If (A.1) is an equality and if $\alpha_k > \alpha_{k+1}$ and $\omega_k < \omega_{k+1}$ for some $1 \leq k < n$, then
\begin{equation}
\{\alpha_j^k, j = 1, \ldots, k\} = \{\alpha_j, j = 1, \ldots, k\},
\end{equation}
i.e., $\alpha_j, j = 1, \ldots, k$, give the largest k values among all α_i’s.

Proof. Inequality (A.1) is well known. See, for example, [6, eq. (II.37) on p. 49].
We now prove (A.2), under the conditions that (A.1) is an equality, $\alpha_k^k > \alpha_{k+1}^k$, and
$\omega_k < \omega_{k+1}$. Suppose, to the contrary, that (A.2) did not hold. Then there would exist
$\ell_1 \leq k$ and $\ell_2 > k$ such that $\alpha_{\ell_1} = \alpha_{\ell_2}^k$,
$\ell_1 \leq k$ and $\ell_2 > k$ such that $\alpha_{\ell_1}^k = \alpha_{\ell_2}$.

Since
$$\omega_{\ell_1} \alpha_{\ell_1} + \omega_{\ell_2} \alpha_{\ell_2} - (\omega_{\ell_1} \alpha_{\ell_1} + \omega_{\ell_2} \alpha_{\ell_2}) = (\alpha_{\ell_2} - \alpha_{\ell_1})(\omega_{\ell_2} - \omega_{\ell_1})$$
$$= (\alpha_{\ell_1}^k - \alpha_{\ell_2}^k)(\omega_{\ell_2} - \omega_{\ell_1})$$
$$\geq (\alpha_k^k - \alpha_{k+1}^k)(\omega_{k+1} - \omega_k) > 0,$$
we have
$\sum_{i=1}^n \omega_i \alpha_i = \sum_{i \neq \ell_1, \ell_2} \omega_i \alpha_i + \omega_{\ell_1} \alpha_{\ell_1} + \omega_{\ell_2} \alpha_{\ell_2} > \sum_{i \neq \ell_1, \ell_2} \omega_i \alpha_i + \omega_i \alpha_{\ell_1} + \omega_i \alpha_{\ell_2} \alpha_{\ell_1} \geq \sum_{i=1}^n \omega_i \alpha_i^k,$
contradicting that (A.1) is an equality. This proves (A.2). \square

Lemma A.2. Let $U \in \mathbb{R}^{n \times k}$ and $\Omega = \text{diag}(\omega_1, \omega_2, \ldots, \omega_n)$, where $\omega_1 \leq \omega_2 \leq \cdots \leq \omega_n$. Then
\begin{equation}
\text{trace}(U^T \Omega U) \geq \sum_{i=1}^k \sigma_i^2 \omega_i,
\end{equation}

where σ_i are the singular values of U. \square
where $\sigma_i \ (i = 1, \ldots, k)$ are the k singular values of U in descending order, i.e., $\sigma_1 \geq \cdots \geq \sigma_k \geq 0$. If (A.3) is an equality, $\omega_k < \omega_{k+1}$, and $\sigma_k > 0$, then $U_{(k+1:n,:)}=0$, i.e., the last $n-k$ rows of U are zeros.

Proof. Write $\alpha_i = (UU^T)_{(i,i)}$, the ith diagonal entry of UU^T. By Lemma A.1,

(A.4) \[\text{trace}(U^T \Omega U) = \text{trace}(UU^T \Omega) = \sum_{i=1}^{n} \omega_i \alpha_i \geq \sum_{i=1}^{n} \omega_i \sigma_i^2, \]

where $\alpha_i^j \ (i = 1, \ldots, n)$ are defined as in Lemma A.1. Since UU^T is symmetric positive semidefinite, its diagonal entries, $\alpha_i \ (i = 1, \ldots, n)$, are majorized by its n eigenvalues, $\sigma_i^2 \ (i = 1, \ldots, k)$ and $\sigma_i^2 = 0 \ (i = k+1, \ldots, n)$ [6, eq. (II.14) on p. 35], meaning

(A.5) \[t_j \overset{\text{def}}{=} \sum_{i=1}^{j} \alpha_j^i \leq s_j \overset{\text{def}}{=} \sum_{i=1}^{j} \sigma_i^2 \] for $1 \leq j \leq n-1$, and $t_n = s_n$.

Therefore, by [16, Lemma 2.3],

(A.6) \[\sum_{i=1}^{n} \omega_i \alpha_i^j \geq \sum_{i=1}^{k} \omega_i \sigma_i^2, \]

which, combined with (A.4), lead to (A.3). But in order to characterize those matrices U that make (A.3) an equality, we need to look into when (A.6) becomes an equality. To that end, we still have to give a proof of (A.6), despite [16, Lemma 2.3]. Let $t_0 = s_0 = 0$. We have

\[\sum_{i=1}^{n} \omega_i \alpha_i^j = \sum_{i=1}^{n} \omega_i (t_i - t_{i-1}) = \omega_n t_n + \sum_{i=1}^{n-1} (\omega_i - \omega_{i+1})t_i \]

(A.7) \[\geq \omega_n s_n + \sum_{i=1}^{n-1} (\omega_i - \omega_{i+1})s_i \]

\[= \sum_{i=1}^{n} \omega_i \sigma_i^2. \]

This is (A.6): note that $\sigma_i = 0$ for $i > k$.

Now if (A.3) is an equality and if $\omega_k < \omega_{k+1}$, then the equal sign in (A.7) must hold, and thus $t_k = s_k$ because $\omega_k - \omega_{k+1} < 0$. It follows from $\sigma_i^2 = 0 \ (i = k+1, \ldots, n)$ that $t_k = s_k = \cdots = s_n = t_n$; so $\alpha_j^k = 0$ for $j > k$ by (A.5). Because (A.4) must be an equality, $\alpha_j^k > 0 = \alpha_j^{k+1}$ (since $\sigma_k > 0$), and $\omega_k < \omega_{k+1}$, we conclude by Lemma A.1 that (A.2) holds, and thus $\alpha_j = (UU^T)_{(j,j)} = 0$ for $j > k$, which implies

\[(UU^T)_{(i,j)} = 0 \quad \text{for max}\{i,j\} > k \]

because UU^T is symmetric positive semidefinite. In particular,

\[U_{(k+1:n,:)}U_{(k+1:n,:)}^T = (UU^T)_{(k+1:n,k+1:n)} = 0, \]

which implies $U_{(k+1:n,:)} = 0$, as expected. □

Proof of Theorem 3.2. Suppose that M is definite. The equations in (2.4) hold for some nonsingular $Y \in \mathbb{R}^{n \times n}$ and $X = Y^{-T}$. We have by (2.4)

\[U^T KU + V^T MV = U^T YA^2Y^T U + V^T XX^T V \]
(A.8) \[\hat{U}^T A^2 \hat{U} + \hat{V}^T \hat{V}, \]

where \(\hat{U} = Y^T U \) and \(\hat{V} = X^T V \). It can be verified that \(\hat{U}^T \hat{V} = U^T V \) and that the correspondences between \(U \) and \(\hat{U} \) and between \(V \) and \(\hat{V} \) are one-one. Therefore,

(A.9) \[
\inf_{U^T V = I_k} \text{trace}(U^T K U + V^T M V) = \inf_{U^T V = I_k} \text{trace}(\hat{U}^T A^2 \hat{U} + \hat{V}^T \hat{V}).
\]

For any given \(\hat{U} \) and \(\hat{V} \), denote their singular values, respectively, by \(\alpha_i \) (\(i = 1, \ldots, k \)) and \(\beta_i \) (\(i = 1, \ldots, k \)) in descending order. Then by Lemma A.2,

(A.10) \[
\text{trace}(\hat{U}^T A^2 \hat{U} + \hat{V}^T \hat{V}) \geq \sum_{i=1}^{k} \alpha_i^2 \lambda_i^2 + \sum_{i=1}^{k} \beta_i^2 \lambda_i^2 \geq \sum_{i=1}^{k} \alpha_i \beta_{k-i+1} \lambda_i \geq 2 \sum_{i=1}^{k} \lambda_i.
\]

The last inequality holds because of [11, eq. (3.3.18) on p. 178], which says \(\alpha_i \beta_{k-i+1} \) is greater than or equal to the \(k \)th largest singular value of \(U^T V = I_k \), which is 1. Combine (A.9) and (A.12) to get

(A.13) \[
\frac{1}{2} \inf_{U^T V = I_k} \text{trace}(U^T K U + V^T M V) \geq \sum_{i=1}^{k} \lambda_i.
\]

Now if all \(\lambda_i > 0 \) (i.e., \(K \) is also definite), then it can be seen that picking \(U \) and \(V \) such that

\[
\hat{U} = \begin{bmatrix} \text{diag}(\lambda_1^{-1/2}, \ldots, \lambda_k^{-1/2}) \end{bmatrix}, \quad \hat{V} = \begin{bmatrix} \text{diag}(\lambda_1^{1/2}, \ldots, \lambda_k^{1/2}) \end{bmatrix}
\]

gives \(\frac{1}{2} \text{trace}(U^T K U + V^T M V) = \sum_{i=1}^{k} \lambda_i \), which, together with (A.13), yield (3.10) with “inf” replaced by “min.”

When \(K \) is singular, \(\lambda_1 = 0 \) and (A.11) is always a strict inequality. So

(A.14) \[
\frac{1}{2} \text{trace}(U^T K U + V^T M V) > \sum_{i=1}^{k} \lambda_i \quad \text{for any } U^T V = I_k.
\]

Suppose \(0 = \lambda_1 = \cdots = \lambda_\ell < \lambda_{\ell+1} \leq \cdots \leq \lambda_k \). We pick \(U \) and \(V \) such that

\[
\hat{U} = \begin{bmatrix} \epsilon^{-1} I_\ell \text{\diag}(\lambda_{\ell+1}^{-1/2}, \ldots, \lambda_k^{-1/2}) \end{bmatrix}, \quad \hat{V} = \begin{bmatrix} \epsilon I_\ell \text{\diag}(\lambda_{\ell+1}^{1/2}, \ldots, \lambda_k^{1/2}) \end{bmatrix}.
\]
Then $\frac{1}{2} \.trace(U^T K U + V^T M V) = \sum_{i=1}^{k} \lambda_i + \ell \epsilon^2$, which goes to $\sum_{i=1}^{k} \lambda_i$ as $\epsilon \to 0$. So we have (3.10) by (A.14), and “inf” cannot be replaced by “min.”

Now suppose $0 < \lambda_1$ and $\lambda_k < \lambda_{k+1}$, and suppose that U and V attain the minimum, i.e.,

$$\frac{1}{2} \trace(U^T K U + V^T M V) = \sum_{i=1}^{k} \lambda_i.$$ \hfill (A.17)

For this to happen, all equal signs in (A.10), (A.11), and (A.12) must take place. For the equality sign in (A.10) to take place, by Lemma A.2 we have $\hat{U}_{(k+1,n,:)} = 0$. We then partition

$$\hat{U} = \begin{bmatrix} \hat{U}_1 & 0 \\ \end{bmatrix}, \quad \hat{V} = \begin{bmatrix} \hat{V}_1 \\ \hat{V}_2 \end{bmatrix}, \quad \hat{U}_1, \hat{V}_1 \in \mathbb{R}^{k \times k}.$$

We claim $\hat{V}_2 = 0$, too. Here is why: For the equality sign in (A.12) to take place, we have $\alpha_i \beta_{k-i+1} = 1$ for $1 \leq i \leq k$. Now $I_k = \hat{U}^T \hat{V} = \hat{U}_1^T \hat{V}_1$ implies $\alpha_i \beta_{k-i+1} \geq 1$ [11, eq. (3.3.18) on p. 178], where β_i is the ith singular value of \hat{V}_1 in descending order. Since $\hat{V}^T \hat{V} = \hat{V}_1^T \hat{V}_1 + \hat{V}_2^T \hat{V}_2$, we have $\beta_i \leq \beta_i$ for $1 \leq i \leq k$ and thus

$$1 \leq \alpha_i \beta_{k-i+1} \leq \alpha_i \beta_{k-i+1} = 1,$$

which implies $\gamma_i = \beta_i$ for $1 \leq i \leq k$. So $\hat{V}_2 = 0$. Now use $U = X \hat{U}$ and $V = Y \hat{V}$ to conclude that $\{\text{span}(U), \text{span}(V)\}$ is the pair of deflating subspaces of $\{K, M\}$ corresponding to the eigenvalues $\pm \lambda_i$ ($1 \leq i \leq k$) of H. \hfill \Box

Remark A.1. The first part of Theorem 3.2, equation (3.10), for the case when both K and M are definite has a quick proof upon using the results of Kovac-Striko and Veselic [14]. Recall the equivalence between the eigenvalue problem (1.1) and the one for (1.14). Since $B - \lambda A$ is diagonalizable if both K and M are definite, we have by Theorem 3.1 and Corollary 3.3 of [14] that

$$\sum_{i=1}^{k} \lambda_i = \min_{Z^T A Z = I_k} \trace(Z^T B Z).$$

Write $Z = [\hat{V}]$, where $U, V \in \mathbb{R}^{n \times k}$, to get

$$\sum_{i=1}^{k} \lambda_i = \min_{U^T V + V^T U = I_k} \trace(U^T K U + V^T M V)$$

$$= \frac{1}{2} \min_{U^T V + V^T U = 2I_k} \trace(U^T K U + V^T M V)$$

$$\leq \frac{1}{2} \min_{U^T V = I_k} \trace(U^T K U + V^T M V).$$

The equal sign in (A.16) is due to scaling both U and V by $1/\sqrt{2}$, and the inequality (A.17) is due to $\{U, V\} : U^T V = I_k \subseteq \{U, V\} : U^T V + V^T U = 2I_k$. Finally, we notice that the equal sign in (A.17) is attainable using Theorem 2.3. This gives (3.10) for the case when both K and M are definite. While this does seem to provide a short and quick proof of (3.10) for the definite case, we point out that the argument
in [14] that leads to (A.15) is nontrivial and lengthy (no shorter than ours that leads to the complete proof of Theorem 3.2).

Appendix B. Proof of Theorem 4.1. Assume that \(M \) is definite. Without loss of generality, we may simply assume \(U^T V = I_k \) and \(W_1 = W_2 = I_k \); otherwise substitutions

\[
U \leftarrow UW_1^{-1}, \quad V \leftarrow VW_2^{-1}, \quad I_k \leftarrow W_1, \quad I_k \leftarrow W_2
\]

will give new \(U \) and \(V \) with \(U^T V = I_k \) and at the same time the same \(H_{44} \).

The equations in (2.4) hold for some nonsingular \(Y \in \mathbb{R}^{n \times n} \) and \(X = Y^{-T} \). Then

\[
(U^T KU = U^T YA^2 Y^T U = \hat{U}^T A^2 \hat{U}) ,
\]

\[
V^T M V = V^T X X^T V = \hat{V}^T \hat{V} ,
\]

where \(\hat{U} = Y^T U \) and \(\hat{V} = X^T V \). Still \(\hat{U}^T \hat{V} = U^T V = I_k \). Decompose \(\hat{V} \) as

\[
\hat{V} \overset{\text{def}}{=} Q^T \hat{V} = \begin{bmatrix} \hat{V}_1 \\ 0 \end{bmatrix} , \quad Q^T Q = I_n , \quad \hat{V}_1 \text{ nonsingular}.
\]

This can be proved, for example, using the SVD of \(\hat{V} \). Then \(\hat{V}^T \hat{V} = \hat{V}_1^T \hat{V}_1 \). Partition

\[
\tilde{U} \overset{\text{def}}{=} Q^T \hat{U} = \begin{bmatrix} \tilde{U}_1 \\ \tilde{U}_2 \end{bmatrix} , \quad \tilde{U}_1 \in \mathbb{R}^{k \times k}.
\]

Then \(\hat{U}^T \hat{V} = (Q^T \hat{U})^T Q^T \hat{V} = \hat{U}_1^T \hat{V}_1 = I_k \), which implies \(\hat{U}_1^T = \hat{V}_1^{-1} \). Set

\[
A = Q^T A^2 Q , \quad E = \tilde{U}_2 \hat{V}_1^T
\]

to get

\[
\hat{U}^T A^2 \hat{U} = \tilde{U}^T A \tilde{U} , \quad \tilde{U} \hat{V}_1^T = \begin{bmatrix} I_k \\ E \end{bmatrix}.
\]

By Theorem 2.1, \(\mu^2_i \) \((1 \leq i \leq k)\) are all the eigenvalues of

\[
(U^T KU)(V^T M V) = (\hat{U}^T A^2 \hat{U})(\hat{V}^T \hat{V}) = (\tilde{U}^T A \tilde{U})(\hat{V}_1^T \hat{V}_1),
\]

whose eigenvalues are the same as \(\tilde{V}_1(\tilde{U}^T A \tilde{U})\tilde{V}_1^T \), a real symmetric positive semi-definite matrix. Set

\[
P = \tilde{U} \hat{V}_1^T (I_k + E^T E)^{-1/2}.
\]

Then \(P^T P = I_k \) by (B.5). Denote by \(\nu_i \) \((1 \leq i \leq k)\) the eigenvalues of \(P^T A P \) in ascending order. We have

\[
\lambda^2_i \leq \nu_i \leq \lambda^2_{i+n-k} \text{ for } 1 \leq i \leq k
\]

by Cauchy’s interlacing theorem [26, 30]. For any \(\hat{u} \in \mathbb{R}^k \), letting \(u = (I_k + E^T E)^{1/2} \hat{u} \) gives

\[
(1 + \|E\|_2^2) \frac{u^T (P^T A P) u}{u^T u} \geq \frac{\hat{u}^T \left[\tilde{V}_1(\hat{U}^T A \hat{U})\tilde{V}_1^T \right] \hat{u}}{\hat{u}^T \hat{u}} \geq \frac{u^T (P^T A P) u}{u^T u}.
\]
since
\[
\dot{u}^T \dot{u} \leq u^T \dot{u} = \dot{u}^T \dot{u} + \dot{u}^T E \dot{u} \leq (1 + \|E\|_2^2) \dot{u}^T \dot{u}.
\]

Denote by \(\mathcal{U}_i \) and \(\mathcal{V}_i \) subspaces of \(\mathbb{R}^k \) of dimension \(i \). Using the Courant–Fisher min-max principle (see \[26, p. 206\], \[30, p. 201\]), we have
\[
\mu_i^2 = \min_{\mathcal{U}_i} \max_{\dot{u} \in \mathcal{U}_i} \frac{\dot{u}^T \left[V_1 (\dot{U}^T A \dot{U}) V_1 ^T \right] \dot{u}}{\dot{u}^T \dot{u}} \geq \min_{\mathcal{U}_i = (I_k + E^T E)^{1/2} \mathcal{U}_i} \max_{\dot{u} \in \mathcal{U}_i} \frac{\dot{u}^T (P^T AP) \dot{u}}{\dot{u}^T \dot{u}} \quad \text{(by \(B.8 \))}
\]
\[
= \min_{\mathcal{U}_i} \max_{\dot{u} \in \mathcal{U}_i} \frac{\dot{u}^T (P^T AP) \dot{u}}{\dot{u}^T \dot{u}} = \nu_i \geq \lambda_i^2, \quad \text{(by \(B.7 \))}
\]
and
\[
\mu_i^2 \leq (1 + \|E\|_2^2) \min_{\mathcal{U}_i = (I_k + E^T E)^{1/2} \mathcal{U}_i} \max_{\dot{u} \in \mathcal{U}_i} \frac{\dot{u}^T (P^T AP) \dot{u}}{\dot{u}^T \dot{u}} \quad \text{(by \(B.8 \))}
\]
\[
= (1 + \|E\|_2^2) \nu_i \leq (1 + \|E\|_2^2) \lambda_{i+n-k}^2. \quad \text{(by \(B.7 \))}
\]

It remains to bound \(1 + \|E\|_2^2 \). We have from \(B.2 \)–\(B.5 \) that
\[
\sqrt{1 + \|E\|_2^2} = \| \dot{U} V_1^T \|_2 \leq \| \dot{U} \|_2 \| \dot{V}_1 \|_2 = \| \dot{U} \|_2 \| \dot{V} \|_2
\]
\[
= \| Y^T U \|_2 \| X^T V \|_2 \leq \| Y^T \|_2 \| Y^{-1} \|_2 \| U \|_2 \| V \|_2
\]
\[
= \sqrt{\kappa(M)} \| U \|_2 \| V \|_2.
\]

In Theorem 2.9, we proved that the eigenvalues of \(H_{SR} \) do not change with respect to the choices of basis matrices. Which means, in proving this theorem, we can use \(H_{SR} \) constructed from different basis matrices for \(\mathcal{U} \) and \(\mathcal{V} \). What we are going to do is pick new \(U \) and \(V \) such that the right-hand side of \(B.9 \) is
\[
\frac{\sqrt{\kappa(M)}}{\cos \angle(\mathcal{U}, \mathcal{V})}.
\]

To this end, we compute QR decompositions
\[
U = Q_1 R_1, \quad V = Q_2 R_2,
\]
where \(Q_1, Q_2 \in \mathbb{R}^{n \times k} \) have orthonormal columns. By \[30, Theorem 5.2 on p. 40\], there are orthogonal matrices \(P \in \mathbb{R}^{n \times n} \) and \(S_1, S_2 \in \mathbb{R}^{k \times k} \) such that
\[
P Q_1 S_1 = k_{n-2k}^{k \times k} I_{k \times k}, \quad P Q_2 S_2 = k_{n-2k}^{k \times k} \Gamma \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} \quad \text{if } 2k \leq n
\]
where \(\Gamma = \text{diag}(\gamma_1, \ldots, \gamma_{\ell}) \) and \(\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_{\ell}) \), \(\ell = k \) or \(n - k \), all \(\gamma_i, \sigma_i \geq 0 \) and \(\gamma_i^2 + \sigma_i^2 = 1 \). With (B.10), we pick new \(U \) and \(V \) to be

\[
P^T \begin{bmatrix} \Gamma^{-1} & 0 \\ 0 & 0 \end{bmatrix}, \quad P^T \begin{bmatrix} \Sigma \\ 0 \end{bmatrix}
\]

if \(2k \leq n \),

\[
P^T \begin{bmatrix} \Gamma^{-1} & 0 \\ 0 & I_{2n-k} \end{bmatrix}, \quad P^T \begin{bmatrix} \Gamma & 0 \\ 0 & I_{2n-k} \end{bmatrix}, \quad P^T \begin{bmatrix} \Sigma & 0 \end{bmatrix}
\]

if \(2k > n \),

respectively. These new \(U \) and \(V \) span the same space as the old \(U \) and \(V \) and satisfy \(U^T V = I_k \) and \(||U||_2 ||V||_2 = \|\cos \angle(U,V)\|^{-1} \). The proof of (4.1) is completed for the case when \(M \) is definite.

Now if \(\lambda_k < \lambda_{k+1} \) and \(\lambda_i = \mu_i \) for all \(i = 1, 2, \ldots, k \), then \(\nu_i = \lambda_i^2 \) for all \(i = 1, 2, \ldots, k \) since \(\mu_i^2 \geq \nu_i \geq \lambda_i^2 \). In particular, \(\text{trace}(P^TAP) = \sum_{i=1}^{k} \lambda_i^2 \). Apply [16, Theorem 2.2] or [13, Theorem 4] on \(-A = Q^T(-A^2)Q \) to conclude that \((QP)_i(k+1, i) \) is orthogonal and \((QP)_{(k+1, n; i)} = 0 \). Write

\[
\hat{U} = \begin{bmatrix} \hat{U}_1 \\ \hat{U}_2 \end{bmatrix}, \quad \hat{V} = \begin{bmatrix} \hat{V}_1 \\ \hat{V}_2 \end{bmatrix}, \quad \hat{U}_1, \hat{V}_1 \in \mathbb{R}^{k \times k}, \quad A_i^2 = \text{diag}(\lambda_i^2, \ldots, \lambda_i^2).
\]

Since \(QP = \hat{U} \hat{V}^T (I_k + E^T E)^{-1/2} \) by (B.3), we conclude that \(\hat{U}_2 = 0 \) and thus \(\hat{U} = \text{span}(X_{(1:k,i)}) \). Use \(\hat{U}^T \hat{V} = I_k \) to get \(\hat{U}_1^T \hat{V}_1 = I_k \) or, equivalently, \(\hat{U}_1^T = \hat{V}_1^{-1} \).

Note, by (B.6), that

\[
(U^T K U)(V^T M V) = \hat{U}_1^T A_i^2 \hat{U}_1 \hat{V}^T \hat{V},
\]

which has the same eigenvalues as

\[
A_i^2 \hat{U}_1 \hat{V}^T \hat{V} \hat{U}_1^T, \quad \text{which has the same eigenvalues as}
\]

\[
A_i \hat{U}_1 \hat{V}^T \hat{V} \hat{U}_1^T A_1 = A_i^2 + A_i \hat{U}_1 \hat{V}^T \hat{V} \hat{U}_1^T A_1.
\]

Since by assumption the eigenvalues of \((U^T K U)(V^T M V) \) are \(\lambda_i^2 (1 \leq i \leq k) \), we have

\[
\sum_{i=1}^{k} \lambda_i^2 = \text{trace}(A_i^2 + A_i \hat{U}_1 \hat{V}^T \hat{V} \hat{U}_1^T A_1) = \sum_{i=1}^{k} \lambda_i^2 + \text{trace}(A_i \hat{U}_1 \hat{V}^T \hat{V} \hat{U}_1^T A_1),
\]

which implies \(\text{trace}(A_i \hat{U}_1 \hat{V}^T \hat{V} \hat{U}_1^T A_1) = 0 \), and thus if \(\lambda_1 > 0 \), then \(\hat{V}_2 \hat{U}_1^T = 0 \Rightarrow \hat{V}_2 = 0 \). Therefore,

\[
U = X \hat{U} = X_{(1:k, i)} \hat{U}_1, \quad V = Y \hat{V} = Y_{(1:k, i)} \hat{V}_1,
\]

as expected. \QED

Appendix C. Proof of Theorem 5.1. The equations in (2.4) hold for some nonsingular \(Y \in \mathbb{R}^{n \times n} \) and \(X = Y^{-T} \). Since the columns of \(Z = [Y, A] \) are the eigenvectors of \(H \) corresponding to \(\lambda_i \) \((i = 1, 2, \ldots, n) \) and the eigenvectors corresponding
to a multiple λ_i can be picked as any $\langle \cdot, \cdot \rangle_{\mathcal{S}}$-orthogonal basis vectors of the associated invariant subspace, we may assume that z_i is parallel to $Z(\cdot, \cdot)$, the ith column of Z. Now for any $U^T X_1 = 0$ and $V^T Y_1 = 0$, $\hat{U}^T \hat{A} \hat{U}$ and $\hat{V}^T \hat{V}$ in (A.8) and (B.1) become

$$\hat{U}^T \hat{A} \hat{U} = \hat{U}^T_2 \hat{A}_2 \hat{U}_2, \quad \hat{V}^T \hat{V} = \hat{V}^T_2 \hat{V}_2,$$

where

$$\hat{U} = \begin{bmatrix} 0 & \hat{U}_2 \end{bmatrix}, \quad \hat{V} = \begin{bmatrix} 0 & \hat{V}_2 \end{bmatrix}, \quad \hat{A}_2 = \text{diag}(\lambda_{\ell+1}, \ldots, \lambda_n).$$

The rest of the proof is the same as the corresponding parts in the proofs of Theorems 3.2 and 4.1.

Acknowledgments. We thank Dr. Rocca and Professor Galli for drawing our attention to the LR eigenvalue problem and Professor Veselić for the reference [14]. We would like to thank Professor Yuan for helpful discussion on the eigenvalue problem (1.14). We are grateful to the anonymous referees for their careful reading of the manuscript and valuable comments, and for drawing our attention to references [14, 19, 23].

REFERENCES

