Cytogenetic Analysis of Otiorhynchus bisulcatus (Fabricius, 1781) and O. (Zadrehus) atroapterus (De Geer, 1775) (Coleoptera, Curculionidae, Entiminae) using C Bands, NORs, and DAPI/CMA3 Staining*

Milada HOLECOVÁ, Anna MARYAŃSKA-NADACHOWSKA and Maria ROŻEK

Accepted May 15, 2013

The tribe Otiorhynchini comprises eight genera of weevils autochthonous exclusively to the Palearctic region. Only ten species of the genus Otiorhynchus Germar, 1822 have been introduced into the Nearctic region. All species of Otiorhynchus are apterous, foliophagous as adults, whereas their larvae develop in soil, feeding on roots. They are well known as inhabitants not only of woodland, forest patches and bushes, but also gardens, hedges, and other types of urban green areas. The Otiorhynchus-complex comprises about 1,500 species and is one of the largest and most speciose within the curculionids (Koch 1992; Magnano 1998; Wanat et al. 2011).

The systematics of the genus Otiorhynchus is complicated and the taxonomic status of individual subgenera and/or species groups has been changed several times. The genus Otiorhynchus is morphologically very heterogenous. It is characterized by having elytra with 10 striae, ventrites without longitudinal furrows, fore and middle tibiae not flattened, and femora untoothed or (in some subgenera) the hind femora toothed. Despite the restricted distribution of many endemic species, the genus as a whole is widely distributed throughout the Palearctic region (Magnano 1998). The subgenus Otiorhynchus s. str. Germar, 1822 is very diversified with regard to distribution and species richness. The taxon Zadrehus Reitter, 1912 was originally described as a species group of the subgenus Aramichus Gozis, 1822 (Reitter 1912). According to the latest revision of Magnano (1998) the taxon Zadrehus was reclassified as a separate subgenus of the genus Otiorhynchus. Both subgenera (Otiorhynchus s. str. and Zadrehus) differ in morphology of the rostral dorsum, antennal fossae, pronotum, tibiae, femora, mesocoxae, elytral striae, intervals and male genitalia as well.

So far only 34 bisexual species and 18 parthenogenetic species or races of the tribe Otiorhynchini from central and northern Europe, the Balkan Pen-

*Partially supported by VEGA, grant number 2/0035/13 and 1/0066/13 to Milada HOLECOVÁ.
insult and Sicily have been karyologically examined. Karyotype characterization was accomplished through analysis of mitotic and meiotic chromosomes after conventional or differentiation staining (Giemsa staining, C-bandung, silver impregnation, DAPI and CMA). All described parthenogenetic species are examples of geographic parthenogenesis and they have a polyploid chromosome number (3n) but the haploid set consists of 11 chromosomes. The karyotype of bisexual species consists of $2n = 22$ and a meioformula $n = 10 + X_Y$, which seems ancestral for all curculionids (SUOMALAINEN 1947; SMITH & VIRKKI 1978; MIKULSKA 1951, 1960; TUCIĆ & MESARIOŠ 1992; HOLECOVÁ et al. 1997 a, b, 2002; LACHOWSKA et al. 1998, 2008a, b; LACHOWSKA & HOLECOVÁ 2000; ROŽEK et al. 2009).

The present paper examines the karyotypes of two species from central Europe – Otiorhynchus s.str. bisulcatus and O. (Zadrehus) atroapterus (=rotundatus) using differential staining techniques. AgNO$_3$-banding was used to reveal the nucleolus organizing chromosomes and to locate the NORs. C-bandung was used to study the distribution of heterochromatin. To characterize the molecular composition of the heterochromatin the preparations were stained with DNA-specific fluorochromes DAPI and CMA which selectively stain AT-rich and GC-rich DNA regions, respectively. The aim of the study was to compare chromosome morphology of both examined species belonging to separate subgenera and to describe similarities and/or differences in karyotype structure.

Material and Methods

For the cytogenetic study, adults of both species were collected in Slovakia and Poland in May 2011 and August 2010-2012 (Table 1). Voucher specimens are deposited in the Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków. Mitotic and meiotic chromosomes were obtained from testicular cells according to the method described by ROŽEK et al. (2009). C-bandung was performed using the procedure described by SUMNER (1972) with minor modifications (LACHOWSKA et al. 2006b). The slides were stained with 4% Giemsa phosphate buffer (pH 6.8) for 10 to 20 min. For the NOR silver staining, the method described by HOWELL & BLACK (1980) was used with some modifications (LACHOWSKA et al. 2005). The DNA binding fluorochromes, GC-specific chromomycin A$_2$ (CMA) and AT-specific 4′-6-diamidino-2-phenylindole (DAPI) were used to reveal the molecular composition of C-heterochromatin according to the methods described by SCHWEITZER (1976) and DONLON & MAGENIS (1983). Chromosomes were classified according to LEVAN et al. (1964). Evaluation of chromosome morphology was based on ten mitotic metaphases. Chromosome lengths were calculated as percentages of the total chromosome length of the haploid set (% TCL), which also includes the sex chromosomes. Spermatogonial metaphases, meiotic stages, and interphase nuclei were analyzed and photographed with a Nikon Eclipse 400 light and Nikon Eclipse E400 fluorescence microscope, at 1000x. Microphotographs were made with a Nikon DS-U1 camera (Nikon, Tokyo, Japan), using the software Lucia Image version 5.0 (Laboratory Imaging, Prague, Czech Republic). The images were optimized for best contrast and brightness by means of the Corel Photo-Paint 11 image-processing software.

Results

The same chromosome number $2n=22$ was observed at spermatogonial metaphases (Figs 1, 8) in both examined species. The meioformula $n = 10 + X_Y^p$ was identical in all male metaphase I plates. Otiorhynchus s. str. bisulcatus ($2n^a = 20 + X_Y^p$). The male diploid complement consists of 20 autosomes and X and Y sex chromosomes. The karyotype is symmetric with chromosomes forming a series decreasing in size. Metacentric structure is evident in eight pairs of autosomes as well as in the X chromosome, whereas two pairs of submetacentrics (5th and 7th) are also recorded (Table 2, Fig. 1). The relative length of autosomes varies between 13.50%-5.09%, the long X chromosome makes up 14.13% of the karyotype, while the dot-

<table>
<thead>
<tr>
<th>Species</th>
<th>Geographic source and date of collection</th>
<th>Host plant and habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otiorhynchus bisulcatus</td>
<td>SW Slovakia, Malé Karpaty Mts., Naháé – Katarínska Nature Reserve (48°33′05″ N, 17°32′32″ E), 340 m a.s.l., May and June, 2011</td>
<td>Fraxinus excelsior the forest margin</td>
</tr>
<tr>
<td>Otiorhynchus (Zadrehus) atroapterus</td>
<td>S Poland, Kraków (50°03′22″ N, 19°56′24″ E), 182 m a.s.l., August, 2010, 2011, 2012</td>
<td>Ligustrum vulgare the hedgerow</td>
</tr>
</tbody>
</table>
shaped y chromosome – only 2.37% (Table 2). The heterochromatin visualized by C-banding is limited to short blocks in centromeric regions of autosomes except for the C-negative 3rd pair. The X chromosome is euchromatic, while the dot-like y chromosome is heterochromatic (Figs 1, 3). Chromosome staining with DAPI and CMA3 shows pericentric bright signals DAPI+/CMA3+ at pachytene/diplotene and metaphase I on ten of eleven bivalents, therefore the obtained results indicate that heterochromatin consists of repeats rich in A-T and C-G nucleotides, respectively (Figs 4, 5).

O. (Zadrehus) atroapterus (2n♂ = 20 +Xy/B70 + 2B). The symmetric karyotype with uniform chromosome morphology contains eight pairs of metacentric autosomes, two submetacentrics (the 4th and 9th pair), the subtelocentric X chromosome and the dot-like y (Table 2, Fig. 8). Often in mitotic and meiotic plates, 2 small additional elements were also recognizable representing supernumerary B-chromosomes (Figs 8, 10). The relative length of autosomes is 14.17%-5.07%. The X chromosome comprises 6.70%, whereas the y only 2.20%. The

<table>
<thead>
<tr>
<th>Pair No.</th>
<th>Otiorhynchus bisulcatus</th>
<th>Otiorhynchus (Zadrehus) atroapterus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%TCL</td>
<td>AR</td>
</tr>
<tr>
<td>1</td>
<td>13.50</td>
<td>1.38</td>
</tr>
<tr>
<td>2</td>
<td>13.14</td>
<td>1.31</td>
</tr>
<tr>
<td>3</td>
<td>12.19</td>
<td>1.30</td>
</tr>
<tr>
<td>4</td>
<td>9.54</td>
<td>1.21</td>
</tr>
<tr>
<td>5</td>
<td>7.88</td>
<td>2.56</td>
</tr>
<tr>
<td>6</td>
<td>7.14</td>
<td>1.20</td>
</tr>
<tr>
<td>7</td>
<td>6.64</td>
<td>1.20</td>
</tr>
<tr>
<td>8</td>
<td>6.08</td>
<td>1.06</td>
</tr>
<tr>
<td>9</td>
<td>5.09</td>
<td>1.04</td>
</tr>
<tr>
<td>10</td>
<td>4.66</td>
<td>1.03</td>
</tr>
<tr>
<td>X</td>
<td>14.13</td>
<td>1.18</td>
</tr>
<tr>
<td>y</td>
<td>2.37</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2

Relative length (% TCL) and centromeric index (AR) of particular chromosome pairs

Figs 1-7. Chromosomes of *Otiorhynchus bisulcatus*. Fig. 1. C-banded mitotic metaphase and karyogram, the asterisks indicate the third pair of autosomes and X chromosome without C-bands. Fig. 2. Diplotene, the arrow indicates the 3rd pair of autosomes without C-bands. Fig. 3. Diakinesis. Fig. 4. DAPI staining – metaphase I. Fig. 5. CMA3 staining – metaphase I. Fig. 6. Metaphase I. Fig. 7. Pachytene bouquet. Bar = 10 μm.
dot-like B chromosomes are slightly longer in comparison with the y (Table 1, Figs 8-10). All autosomes possess short pericentromeric C-bands of similar sizes, whereas a slightly longer heterochromatic block occurs in the centromeric region of the X. The dot-shaped y is totally heterochromatic (Figs 8, 10).

After DAPI staining at pachytene/diplotene/diakinesis, bright signals were observed in the pericentromeric regions of all pairs of chromosomes. After CMA3 staining signals on chromosomes were not visible (Fig. 11).

Examination of spermatocyte I cell divisions shows significant similarity of individual meiotic stages in both *Otiorhynchus* species. As a consequence of weaker chromosome spiralisation, larger blocks of constitutive heterochromatin are clearly visible during leptotene, zygotene, pachytene, diplotene and diakinesis in comparison with mitotic metaphase (Figs 2, 3 and 9). During early diakinesis the longest autosomal pairs possess 3-4 chiasmata each (terminal and intercalar) whereas the shorter pairs are connected by 1-2 chiasmata. Later after terminalisation of chiasmata the bivalents form rings, crosses and rods (Figs 3, 9). Ten autosomal bivalents and one achiasmate sex heterovalent *Xy*, are clearly seen in metaphase I plates (Fig. 10). An additional euchromatic element in *Otiorhynchus atroapterus* is observed in the majority of metaphases I. It probably originated from two B chromosomes, often occurring at mitotic metaphase (Fig. 10).

In both examined species argentophilic blocks are localized in sex chromosomes and are detectable only during all stages of the meiotic prophase and metaphase I, whereas they did not stain and remained undetected in the mitotic metaphase plates (Figs 6, 7, 12).

Discussion

Both examined species of *Otiorhynchus* show some similarities such as a sex chromosome sys-
tem of the achiasmate parachute type (X_{yb}) and the presence of 10 autosome pairs. This confirms the karyological conservatism in this genus because it is the most characteristic chromosome number and seems to be the ancestral state in the family Curculionidae (LACHOWSKA et al. 1998). The examined karyotypes are characterized by the prevalence of metacentric chromosomes, a condition which is almost the rule in the karyotypic architecture not only in Otiorhynchini but also in the majority of broad-nosed weevils (Entiminae) (SMITH & VIRKKI 1978; LACHOWSKA et al. 1998, 2006a, 2008a).

The karyotype of Otiorhynchus atroapterus is of interest because it shows the presence of euchromatic B-chromosomes, clearly distinguishable from the regular members of the complement. The size of these additional elements is slightly larger than that of the y heterochromosome. The present state of knowledge on B-chromosomes in weevils does not offer a clear explanation of their genesis. It is possible that they originated by fragmentation of one arm of the X chromosome of Otiorhynchus atroapterus. The subtelocentric X chromosome seems to be indirect evidence. In curculionid species supernumerary chromosomes are rare. From among 600 curculionid species examined karyologically, they were found only in seven species (ENNIS 1972; SMITH & BROWER 1974; DEY 1989; HOLECOVÁ et al. 2005; LACHOWSKA et al. 2008a, and the present study).

Up to now C-banding was occasionally used for identification of closely related species in some coleopteran groups, e.g. Carabidae, Aphodiidae, Hydrophilidae etc. in which conventional staining techniques often provide insufficient information (ANGUS et al. 2000; WILSON & ANGUS 2004; LACHOWSKA et al. 2009). In the examined species the chromosomes resemble one another in having C-bands restricted mostly to the area around the centromere which is characteristic of the majority of insects (JUAN & PETITPIERRE 1989; IMAI 1991; ALMEIDA et al. 2000; PROENÇA et al. 2002; ZACARO et al. 2004). Pericentromeric blocks are present in the majority of autosomes and in the X chromosome in Otiorhynchus atroapterus, while the y chromosome is heterochromatic in both examined species. In addition to the pericentromeric C-bands in Otiorhynchus, an intercalary position of the constitutive heterochromatin was also detected in chromosomes of O. (Otiorhynchus) coecus and O. (Phalantorhynchus) morio (LACHOWSKA et al. 2008a). In the X chromosome the constitutive heterochromatin, if present, is located either in the centromeric region or in an intercalary position. In both examined species, the y chromosome is heterochromatic. In Otiorhynchini (in genera Cirrorhynchus, Dodecastichus, Otiorhynchus) analyzed in a previous study (LACHOWSKA et al. 2008a) the dot-shaped y was C-negative although the C-banding did not show all types of heterochromatin (SUMNER 1990). It is common knowledge that in Curculionidae, heterochromatin occurs mainly in a small proportion. Usually these short segments are very weak or invisible when the chromosomes become more condensed during the mitotic metaphase and meiotic diakinesis, metaphase I and II (HOLECOVÁ et al. 2002; LACHOWSKA et al. 2005, 2006a, b).

In Coleoptera AgNO$_3$ staining has been useful for the analysis of nucleolus organizer regions (NORs) (VIRKKI et al. 1991; BIONE et al. 2005a, b). In many species of beetles from different families, NORs may be located in the autosomes pairs and/or sex chromosomes, although most data show that the nucleolus organizer is most often distributed in one autosome pair (VIRKKI 1983; VIRKKI et al. 1984; VITTURI et al. 1999; COLOMBA et al. 2000; MOURA et al. 2003; BIONE et al. 2005a; ALMEIDA et al. 2006; SCHNEIDER et al. 2007; LACHOWSKA et al. 2008a; MENDES-NETO et al. 2010). In both examined species the Ag-stained NOR is situated in the sex chromosomes. The presence of argentophilic masses in the sex chromosomes up until the late phase of meiosis I may indicate that the X_{yb} association is not necessarily due to a NOR. Studies on segregation of sex chromosomes in weevils showed that even when the NORs are autosomally located, the lumen of the sex bivalent is filled with a proteinaceous substance with an affinity for silver from diakinesis to anaphase I. This substance may probably play an adhesive role, controlling the correct separation at anaphase I (VIRKKI et al. 1990, 1991; JUAN et al. 1991, 1993; PETITPIERRE 1996; MOURA et al. 2003; BIONE et al. 2005a, b; SCHNEIDER et al. 2007; LACHOWSKA et al. 2008a; MENDES-NETO et al. 2010). Because in other species of Otiorhynchini only one NOR is located in the autosomes (LACHOWSKA et al. 2008a), our data are in accordance with the hypothesis that an autosome pair functions as a nucleolus organizer, and the presence of non-nucleolar argentophilic substances in the X_{yb} bivalents contributes to regular association and segregation during meiosis. However, only the application of fluorescence in situ hybridization (FISH) with an rDNA probe would precisely identify the NORs in these species.

Chromosome staining by DNA base specific fluorochromes is seldom used in cytogenetic studies of Coleoptera (JUAN 1989; VITTURI et al. 1999; COLOMBA et al. 2000; MOURA et al. 2003; SCHNEIDER et al. 2007; LACHOWSKA et al. 2008a; MENDES-NETO et al. 2010; KARAGYAN & LACHOWSKA 2012). The use of fluorescent DNA-banding dyes with different specificities provides a better characterization of heterochromatic regions in terms of their relative enrichment with A-T or G-C.
base pairs. C-bands fluoresced brightly after DAPI staining in both examined Otiorhynchus species. This suggests the occurrence of a high amount of A-T base pairs in the DNA sequences making up the heterochromatic C-bands. Positive DAPI signals were found in the majority of weevils previously studied confirming that A-T pairs often make up the main part of heterochromatin (LACHOWSKA 2008; LACHOWSKA et al. 2008). However, after CMA3 staining, we found positive signals in the majority of chromosomes of O. bisulcatus showing that heterochromatin in this species consists of A-T and C-G pairs.

CMA3 staining labeled NORs independently of their activity, and the fluorescence is associated with G-C content typical for genes encoding ribosomal RNA (rDNA) (ANOKHIN & NOKKALA 2004). The correlation between NORs and CMA3 bands is quite common in some insects, including beetles (BRITO et al. 2003), but it is not always possible to identify rDNA. Silver nitrate stains argentophilic acid protein involved in rDNA activity but can also stain other proteins. CMA3 stains C-G rich parts of chromosomes including NORs. Numerous positive CMA3 signals may cause difficulties in identification of NORs and/or make it impossible as in O. bisulcatus.

In this study, the fluorescent signals after CMA3 were positive in O. bisulcatus but negative in O. (Zadrehus) astroopterus. This observation constitutes another difference between the karyotypes of both species besides differences in the morphology of X chromosomes and C-banding pattern in autosomes.

In general, the distribution of AT- or GC-rich clusters of constitutive heterochromatin among beetles studied by fluorochrome staining is variable. For instance, positive CMA3 and negative DAPI signals were found in some Elateridae (SCHNEIDER et al. 2007), Buprestidae (KARAG-YAN & LACHOWSKA 2012) and most Scarabaeoidea (VITTURI et al. 1999; MOURA et al. 2003; BIONE et al. 2005b; CABRAL-DE-MELLO et al. 2010). Positive DAPI signals were found in the majority of the Curculionidae (LACHOWSKA 2008; LACHOWSKA et al. 2008a and the present paper). Rarely, positive signals in both DAPI and CMA3 were revealed in Scarabaeidae (BIONE et al. 2005b) in Curculionidae (LACHOWSKA 2008, the present study) and Chrysomelidae (ALMEIDA et al. 2006).

In conclusion, data from our previous (LACHOWSKA et al. 2008a) and present study offer important insights into the karyotype characteristics of the genus Otiorhynchus which may be useful in elucidation of relationships among the species of the tribe Otiorhynchini as well as between weevils and representatives of other coleopteran families.

References

ALMEIDA M.C., ZAGARO D.M., CELLA D.M. 2000. Cytogenetic analysis of Epicauta atomaria (Meloidae) and Palenbus derogatus (Tenebrionidae) with X0, sex determination system using standard staining, C-bands, NOR and a-apoptomal complex microscoring techniques. Hereditas 133: 147-157.

Kryotype of Otiorhynchus bisulcatus and O. (Zadrehus) atropterus

