Asymptotic behaviour of a multidimensional moving boundary problem

Joachim Escher
Leibniz University Hannover, Germany
escher@ifam.uni-hannover.de

Of concern is a moving boundary problem modelling the growth of multicellular spheroids or in vitro tumors. This model consists of two elliptic equations describing the concentration of a nutrient and the distribution of the internal pressure in the tumour’s body, respectively. The driving mechanism of the evolution is governed by Darcy’s law. Finally surface tension effects on the moving interface counteract the internal pressure. Based on a centre manifold analysis, we prove that if the initial domain is sufficiently close to a Euclidean ball in a suitable Hölder norm, then the solution exists globally and the corresponding domains converge exponentially fast to some (possibly translated) ball, provided the surface tension coefficient is larger than a positive threshold value γ^*. If the surface tension coefficient is less than γ^* then the radially symmetric equilibrium centred at the origin is unstable.

Analysis of a reaction-diffusion system: Dynamics and steady states

Huiqiang Jiang
University of Pittsburgh, USA
hqjiang@pitt.edu

Wei-Ming Ni

In this talk, we will discuss our recent results on Gierer-Meinhardt system. One of the main difficulties of the system is the singular structure of its reaction term, we will show how new techniques help to overcome such difficulty.

A variational model for microstructure generation

Giorgio Fusco
Università di L’Aquila, Italy
fusco@univaq.it

We analyze the minimization problem

$$\min_{u \in W^{2,2}(0,1)} F'(u) + \frac{\mu}{2\epsilon^2} \int_{(0,1)} (u - \bar{u})^2 dx, \quad (1)$$

where \bar{u} is a given function, $0 < \mu$, $0 < \epsilon << 1$ are parameters and $F'(u) := \int_{(0,1)} (\frac{\epsilon^2}{2} u_{xx}^2 + \phi(u_x)) dx$. We are interested in the case of a non convex energy density $\phi : (-\infty, +\infty) \to [0, +\infty)$. Numerical simulations indicate that, in time scales of $O(\epsilon^2)$, the gradient system defined by F'

$$u_t = -\epsilon^2 u_{xxxx} + \phi'(u_x), \quad (2) + BC , \quad u(.,0) = \bar{u},$$

generates a fine microstructure in certain subregions of $(0,1)$ that are determined by the initial datum \bar{u}. The parameter μ in (1) can be interpreted as the inverse of a slow time τ defined by $t = \epsilon^2 \tau$. Therefore one can expect that, for small $\epsilon > 0$, minimizers $u^{\epsilon,\mu,\bar{u}}$ of (1) exhibit a structure similar to the one shown, for $\tau = \frac{1}{\mu}$, by the solution $u(., \epsilon^2 \tau, \bar{u})$ of (2) in the numerical experiments. We present several results that confirm the above expectation.
Dung Le
University of Texas at San Antonio, USA
dle@math.utsa.edu

We consider strongly coupled parabolic systems consist of 2 equations given on n dimensional domains with n larger than two. Under suitable conditions on the diffusion matrix it can be proved that bounded weak solutions are Hölder continuous. We also report recent results of this type for systems consist of more than two equations.

Oblique derivative problems for parabolic equations

Gary Lieberman
Iowa State University, USA
lieb@iastate.edu

We study problems of the type $u_t = F(x, t, u, Du, D^2u)$ in some space-time domain Ω with boundary condition $G(x, t, u, Du) = 0$ on the lateral boundary of Ω and prescribed initial data. Our interest is primarily with weak regularity hypotheses on the domain Ω and the function G. As a particular case, we mention the normal derivative problem on a cylindrical domain with piecewise smooth cross-section.

On the shape of the stable pattern for activator-inhibitor systems in a disk

Yasuhito Miyamoto
Tokyo Institute of Technology, Japan
miyamoto@math.titech.ac.jp

We study the shape of the stable steady state to shadow systems of the activator-inhibitor type. Specifically, we show that if stable, then the shape should be like a boundary one-spike layer. We will see that this problem is deeply related to the "hot spots" conjecture of J. Rauch.

Dynamics of a density discontinuity in compressible viscous flows. Contact problem.

Misha Perepelitsa
Vanderbilt University, USA
mikhail.perepelitsa@vanderbilt.edu

We will discuss the evolution of the interface of a density discontinuity in the model of Navier-Stokes equations for compressible flows. All time existence of weak, near equilibrium solutions will be established, when the interface is in contact with the boundary of the flow domain.

Asymptotic symmetry of positive solutions of parabolic equations and systems

Peter Polacik
University of Minnesota, USA
polacik@math.umn.edu

We consider parabolic equations on (possibly non-smooth) domains with reflectional symmetries. Under suitable conditions on the nonlinearity it can be proved that bounded positive solutions are asymptotically symmetric as time approaches infinity. We shall review recent results of this form for scalar equations and systems on bounded domains.

Diffusive synchronization of spatially extended oscillations

Arnd Scheel
University of Minnesota, USA
scheel@umn.edu

We will discuss properties of temporal oscillations in reaction-diffusion systems posed on \mathbb{R}^n. The main result shows that localized perturbations to initial conditions decay diffusively. We also discuss temporal asymptotics of bounded perturbations. We will conclude with some open problems concerned with the description of perturbations with bounded phase gradient.

On the Stefan problem with surface tension

Gieri Simonett
Vanderbilt University, USA
gieri.simonett@vanderbilt.edu

Jan Prüss

Jan Prüss
In this talk, I consider the two-phase Stefan problem with the modified Gibbs-Thomson law

\[u = \sigma H + \delta V \quad \text{on} \quad \Gamma(t), \quad \sigma > 0, \delta \geq 0, \]

and the kinetic condition

\[[d\partial_{\nu}u] = (\ell - [\kappa]u)V \quad \text{on} \quad \Gamma(t). \]

Here \(\Gamma(t) \) denotes the unknown moving hypersurface that separates the liquid from the solid phase, \(u \) is the temperature, \(H \) the mean curvature of \(\Gamma(t) \), \(\sigma \) the surface tension coefficient, \(\delta \) the coefficient of kinetic undercooling, \(V \) the normal velocity of \(\Gamma(t) \), \(\ell \) the latent heat, \([\kappa] \) the jump of the heat capacities across \(\Gamma(t) \), and \([d\partial_{\nu}u]\) the jump of the heat fluxes across \(\Gamma(t) \).

It is shown that this system conserves energy, and admits a Lyapunov function. Under appropriate boundary conditions we also show that spheres (together with constant temperature distributions) are the only equilibrium states for this system, and we will characterize the stability of these equilibria in dependence of physical and geometric quantities.

--- \(\infty \circ \infty \) ---

An age and spatially structured population model for *Proteus mirabilis* swarm-colony development

Christoph Walker
University of Hannover, Germany
walker@ifam.uni-hannover.de

Proteus mirabilis are bacteria that make strikingly regular spatial-temporal patterns on agar surfaces. In this talk we consider a mathematical model that has been shown to display these structures when solved numerically. The model consists of an ordinary differential equation coupled with a partial differential equation involving a first-order hyperbolic aging term together with nonlinear degenerate diffusion. We prove that the system admits global weak solutions.

--- \(\infty \circ \infty \) ---

Solutions with moving singularities for a semilinear parabolic equation

Eiji Yanagida
Tohoku University, Japan
yanagida@math.tohoku.ac.jp
Shota Sato

We consider the Cauchy problem for a semilinear parabolic equation with a power nonlinearity. It is known that the equation has a singular steady state in some parameter range. Our concern is the existence of a solution with a moving singularity that is obtained by perturbing the singular steady state. By the formal expansion, it turns out that the correction term must satisfy a parabolic equation with inverse-square potential. From the well-posedness of this equation, we see that there appears a critical exponent. Paying attention to this exponent, given a motion of the singular point and suitable initial data, we establish the time-local existence, uniqueness and comparison results for a solution with a moving singularity for a certain class of initial data.

--- \(\infty \circ \infty \) ---

Strong non-collapsing and uniform Sobolev inequality for Ricci flow with surgeries

Qi Zhang
Math. Dept. UC Riverside, USA
qizhang@math.ucr.edu

We prove a uniform Sobolev inequality for Ricci flow, which is independent of the number of surgeries. As an application, under less assumptions, a non-collapsing result stronger than Perelman’s \(\kappa \) non-collapsing with surgery is derived. The proof is much shorter and seems more accessible. The result also improves some earlier ones where the Sobolev inequality depended on the number of surgeries.

Another application is a proof of Hamilton’s little loop conjecture win case of surgeries. The conjecture was proved by Perelman in the case without surgery.

--- \(\infty \circ \infty \) ---