Classifying Quadratic Quantum Planes using Graded Skew Clifford Algebras

Michaela Vancliff

(supported in part by NSF grant DMS-0900239)

University of Texas at Arlington, USA

Journal of Algebra 346 (2011), 152-164
with Manizheh Nafari & Jun Zhang
Motivation

- 2010: Cassidy & Vancliff → graded skew Clifford algebras (GSCAs)
 geometry determines when GSCA is regular etc.

- How useful are GSCAs in classifying (quadratic) regular algebras?

- Regular algebras of gldim 2 (resp, 1) are GSCAs. Gldim 3?

- The case of quadratic AS-regular algebras of gldim 3 (i.e., quadratic quantum planes) is the goal of this talk & is joint work with Manizheh Nafari and Jun Zhang.

- Henceforth, k = algebraically closed field.
Motivation

- 2010: Cassidy & Vancliff → graded skew Clifford algebras (GSCAs) geometricaly determines when GSCA is regular etc.

- How useful are GSCAs in classifying (quadratic) regular algebras?

- The case of quadratic AS-regular algebras of gldim 3 (i.e., quadratic quantum planes) is the goal of this talk & is joint work with Manizheh Nafari and Jun Zhang.

Henceforth, k = algebraically closed field.
Motivation

- 2010: Cassidy & Vancliff → graded skew Clifford algebras (GSCAs)
 geometry determines when GSCA is regular etc.

- How useful are GSCAs in classifying (quadratic) regular algebras?

- Regular algebras of gldim 2 (resp, 1) are GSCAs. Gldim 3?
Motivation

- 2010: Cassidy & Vancliff → graded skew Clifford algebras (GSCAs) geometry determines when GSCA is regular etc.

- How useful are GSCAs in classifying (quadratic) regular algebras?

- Regular algebras of gldim 2 (resp, 1) are GSCAs. Gldim 3?

- The case of quadratic AS-regular algebras of gldim 3 (i.e., quadratic quantum planes) is the goal of this talk & is joint work with Manizheh Nafari and Jun Zhang.
Motivation

- 2010: Cassidy & Vancliff → graded skew Clifford algebras (GSCAs) geometry determines when GSCA is regular etc.

- How useful are GSCAs in classifying (quadratic) regular algebras?

- Regular algebras of gldim 2 (resp, 1) are GSCAs. Gldim 3?

- The case of quadratic AS-regular algebras of gldim 3 (i.e., quadratic quantum planes) is the goal of this talk & is joint work with Manizheh Nafari and Jun Zhang.

Henceforth, $\mathbb{k} = \text{algebraically closed field}$.
Definition

Let $\mu = (\mu_{ij}) \in M(n, \mathbb{k})$ be such that $\mu_{ij}\mu_{ji} = 1$ for all i, j such that $i \neq j$.

Clearly, $\mu_{ij} = 1$ for all i, j \Rightarrow μ-symmetric = symmetric
$\mu_{ij} = -1$ for all i, j \Rightarrow μ-symmetric = skew-symmetric (if char(\mathbb{k}) $\neq 2$).

Example

$n = 3$:

$$
\begin{pmatrix}
 a & b & c \\
 \mu_{21} & d & e \\
 \mu_{31} & \mu_{32} & f
\end{pmatrix}
$$

is μ-symmetric.
Definition

Let $\mu = (\mu_{ij}) \in M(n, k)$ be such that $\mu_{ij}\mu_{ji} = 1$ for all i, j such that $i \neq j$. A matrix $M \in M(n, k)$ is called μ-symmetric if $M_{ij} = \mu_{ij}M_{ji}$ for all $i, j = 1, \ldots, n$.
Definition

Let \(\mu = (\mu_{ij}) \in M(n, k) \) be such that \(\mu_{ij}\mu_{ji} = 1 \) for all \(i, j \) such that \(i \neq j \).

A matrix \(M \in M(n, k) \) is called \(\mu \)-symmetric if \(M_{ij} = \mu_{ij}M_{ji} \) for all \(i, j = 1, \ldots, n \).

Clearly,

\[\mu_{ij} = 1 \text{ for all } i, j \Rightarrow \mu \text{-symmetric} = \text{symmetric} \]
Definition

Let $\mu = (\mu_{ij}) \in M(n, \mathbb{k})$ be such that $\mu_{ij}\mu_{ji} = 1$ for all i, j such that $i \neq j$.

A matrix $M \in M(n, \mathbb{k})$ is called μ-symmetric if $M_{ij} = \mu_{ij}M_{ji}$ for all $i, j = 1, \ldots, n$.

Clearly,

$\mu_{ij} = 1$ for all $i, j \Rightarrow \mu$-symmetric = symmetric

$\mu_{ij} = -1$ for all $i, j \Rightarrow \mu$-symmetric = skew-symmetric (if $\text{char}(\mathbb{k}) \neq 2$).
Definition

Let $\mu = (\mu_{ij}) \in M(n, k)$ be such that $\mu_{ij}\mu_{ji} = 1$ for all i, j such that $i \neq j$.

A matrix $M \in M(n, k)$ is called μ-symmetric if $M_{ij} = \mu_{ij}M_{ji}$ for all $i, j = 1, \ldots, n$.

Clearly,

$\mu_{ij} = 1$ for all $i, j \Rightarrow \mu$-symmetric = symmetric

$\mu_{ij} = -1$ for all $i, j \Rightarrow \mu$-symmetric = skew-symmetric (if char(k) $\neq 2$).

Example

$n = 3$:

\[
\begin{bmatrix}
 a & b & c \\
 \mu_{21}b & d & e \\
 \mu_{31}c & \mu_{32}e & f
\end{bmatrix}
\]

is μ-symmetric.
µ-symmetric Matrices

Definition

Let \(\mu = (\mu_{ij}) \in M(n, k) \) be such that \(\mu_{ij}\mu_{ji} = 1 \) for all \(i, j \) such that \(i \neq j \).

A matrix \(M \in M(n, k) \) is called \(\mu \)-symmetric if \(M_{ij} = \mu_{ij}M_{ji} \) for all \(i, j = 1, \ldots, n \).

Clearly,

\[
\mu_{ij} = 1 \text{ for all } i, j \Rightarrow \mu\text{-symmetric} = \text{symmetric}
\]

\[
\mu_{ij} = -1 \text{ for all } i, j \Rightarrow \mu\text{-symmetric} = \text{skew-symmetric (if \text{char}(k) \neq 2).}
\]

Example

\[
\begin{bmatrix}
a & b & c \\
\mu_{21}b & d & e \\
\mu_{31}c & \mu_{32}e & f
\end{bmatrix}
\]

\(n = 3 \): is \(\mu \)-symmetric.

Assumption

For the rest of the talk, assume \(\mu_{ii} = 1 \) for all \(i \).
Graded Skew Clifford Algebras

Definition ([Van den Bergh, Le Bruyn] char(\(k\) \(\neq\) 2)

Let \(M_1, \ldots, M_n \in M(n, \mathbb{k}) \) denote symmetric matrices.

Example
Skew polynomial rings on generators \(x_1, \ldots, x_n \) with relations
\(x_i x_j = -\mu_{ij} x_j x_i \), for all \(i \neq j \), are GSCAs.
Graded Skew Clifford Algebras

<table>
<thead>
<tr>
<th>Definition ([Van den Bergh, Le Bruyn] char((\mathbb{k})) (\neq 2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let (M_1, \ldots, M_n \in M(n, \mathbb{k})) denote symmetric matrices. A graded Clifford algebra, associated to (M_1, \ldots, M_n),</td>
</tr>
</tbody>
</table>
Graded Skew Clifford Algebras

Definition ([Van den Bergh, Le Bruyn] \(\text{char}(k) \neq 2 \))

Let \(M_1, \ldots, M_n \in M(n, k) \) denote symmetric matrices. A \textit{graded Clifford algebra}, associated to \(M_1, \ldots, M_n \), is a graded \(k \)-algebra \(A \) on degree-1 generators \(x_1, \ldots, x_n \) and on degree-2 generators \(y_1, \ldots, y_n \) with defining relations given by:

(i) \[x_i x_j + \mu_{ij} x_j x_i = n \sum_{k=1}^{n} (M_k)_{ij} y_k \] for all \(i, j = 1, \ldots, n \), and

(ii) the existence of a normalizing sequence \(\{ y'_{1}, \ldots, y'_{n} \} \subset A_2 \) that spans \(k y_{1} + \cdots + k y_{n} \).

Example

Skew polynomial rings on generators \(x_1, \ldots, x_n \) with relations \(x_i x_j = -\mu_{ij} x_j x_i \), for all \(i \neq j \), are GSCAs.
Graded Skew Clifford Algebras

Definition ([Van den Bergh, Le Bruyn] char(\(k\)) \(\neq 2\))

Let \(M_1, \ldots, M_n \in M(n, \kappa)\) denote symmetric matrices. A graded *Clifford algebra*, associated to \(M_1, \ldots, M_n\), is a graded \(\kappa\)-algebra \(A\) on degree-1 generators \(x_1, \ldots, x_n\) and on degree-2 generators \(y_1, \ldots, y_n\) with defining relations given by:

(i) \(x_i x_j + x_j x_i = \sum_{k=1}^{n} (M_k)_{ij} y_k\) for all \(i, j = 1, \ldots, n\), and
Graded Skew Clifford Algebras

Definition ([Van den Bergh, Le Bruyn] \(\text{char}(k) \neq 2 \))

Let \(M_1, \ldots, M_n \in M(n, k) \) denote symmetric matrices. A graded Clifford algebra, associated to \(M_1, \ldots, M_n \), is a graded \(k \)-algebra \(A \) on degree-1 generators \(x_1, \ldots, x_n \) and on degree-2 generators \(y_1, \ldots, y_n \) with defining relations given by:

(i) \(x_i x_j + x_j x_i = \sum_{k=1}^{n} (M_k)_{ij} y_k \) for all \(i, j = 1, \ldots, n \), and

(ii) \(y_k \) is central for all \(k = 1, \ldots, n \).
Graded Skew Clifford Algebras

Definition ([Cassidy & Vancliff] char(\(\mathbb{k}\)) \(\neq\) 2)

With \(\mu\) as above, let \(M_1, \ldots, M_n \in M(n, \mathbb{k})\) denote \(\mu\)-symmetric matrices. A graded Clifford algebra, associated to \(M_1, \ldots, M_n\), is a graded \(\mathbb{k}\)-algebra \(A\) on degree-1 generators \(x_1, \ldots, x_n\) and on degree-2 generators \(y_1, \ldots, y_n\) with defining relations given by:

(i) \(x_i x_j + x_j x_i = \sum_{k=1}^{n} (M_k)_{ij} y_k\) for all \(i, j = 1, \ldots, n\), and

(ii) \(y_k\) is central for all \(k = 1, \ldots, n\).
Graded Skew Clifford Algebras

Definition ([Cassidy & Vancliff] char(\(\mathbb{k} \)) \(\neq 2 \))

With \(\mu \) as above, let \(M_1, \ldots, M_n \in M(n, \mathbb{k}) \) denote \(\mu \)-symmetric matrices. A graded skew Clifford algebra, associated to \(M_1, \ldots, M_n \), is a graded \(\mathbb{k} \)-algebra \(A \) on degree-1 generators \(x_1, \ldots, x_n \) and on degree-2 generators \(y_1, \ldots, y_n \) with defining relations given by:

(i) \(x_i x_j + x_j x_i = \sum_{k=1}^{n} (M_k)_{ij} y_k \) for all \(i, j = 1, \ldots, n \), and

(ii) \(y_k \) is central for all \(k = 1, \ldots, n \).
Graded Skew Clifford Algebras

Definition ([Cassidy & Vancliff] \(\text{char}(\mathbb{k}) \neq 2 \))

With \(\mu \) as above, let \(M_1, \ldots, M_n \in M(n, \mathbb{k}) \) denote \(\mu \)-symmetric matrices. A graded skew Clifford algebra, associated to \(\mu, M_1, \ldots, M_n \), is a graded \(\mathbb{k} \)-algebra \(A \) on degree-1 generators \(x_1, \ldots, x_n \) and on degree-2 generators \(y_1, \ldots, y_n \) with defining relations given by:

(i) \(x_i x_j + x_j x_i = \sum_{k=1}^{n} (M_k)_{ij} y_k \) for all \(i, j = 1, \ldots, n \), and

(ii) \(y_k \) is central for all \(k = 1, \ldots, n \).
Graded Skew Clifford Algebras

Definition ([Cassidy & Vancliff] char(\(k\)) \(\neq 2\))

With \(\mu\) as above, let \(M_1, \ldots, M_n \in M(n, k)\) denote \(\mu\)-symmetric matrices. A graded skew Clifford algebra, associated to \(\mu, M_1, \ldots, M_n\), is a graded \(k\)-algebra \(A\) on degree-1 generators \(x_1, \ldots, x_n\) and on degree-2 generators \(y_1, \ldots, y_n\) with defining relations given by:

(i) \(x_ix_j + \mu_{ij}x_jx_i = \sum_{k=1}^{n}(M_k)_{ij}y_k\) for all \(i, j = 1, \ldots, n\), and

(ii) \(y_k\) is central for all \(k = 1, \ldots, n\).
Graded Skew Clifford Algebras

Definition ([Cassidy & Vancliff] char(\mathbb{k}) $\neq 2$)

With μ as above, let $M_1, \ldots, M_n \in M(n, \mathbb{k})$ denote μ-symmetric matrices. A graded skew Clifford algebra, associated to μ, M_1, \ldots, M_n, is a graded \mathbb{k}-algebra A on degree-1 generators x_1, \ldots, x_n and on degree-2 generators y_1, \ldots, y_n with defining relations given by:

(i) $x_i x_j + \mu_{ij} x_j x_i = \sum_{k=1}^{n} (M_k)_{ij} y_k$ for all $i, j = 1, \ldots, n$, and

(ii) the existence of a normalizing sequence $\{y'_1, \ldots, y'_n\} \subset A_2$ that spans $\mathbb{k} y_1 + \cdots + \mathbb{k} y_n$.

Example

Skew polynomial rings on generators x_1, \ldots, x_n with relations $x_i x_j = -\mu_{ij} x_j x_i$, for all $i \neq j$, are GSCAs.
Graded Skew Clifford Algebras

Definition ([Cassidy & Vancliff](#) \(\text{char}(k) \neq 2 \))

With \(\mu \) as above, let \(M_1, \ldots, M_n \in M(n, k) \) denote \(\mu \)-symmetric matrices. A *graded skew Clifford algebra*, associated to \(\mu, M_1, \ldots, M_n \), is a graded \(k \)-algebra \(A \) on degree-1 generators \(x_1, \ldots, x_n \) and on degree-2 generators \(y_1, \ldots, y_n \) with defining relations given by:

(i) \(x_i x_j + \mu_{ij} x_j x_i = \sum_{k=1}^{n} (M_k)_{ij} y_k \) for all \(i, j = 1, \ldots, n \), and

(ii) the existence of a *normalizing* sequence \(\{ y'_1, \ldots, y'_n \} \subset A_2 \) that spans \(k y_1 + \cdots + k y_n \).

Example

Skew polynomial rings on generators \(x_1, \ldots, x_n \) with relations \(x_i x_j = -\mu_{ij} x_j x_i \), for all \(i \neq j \), are GSCAs.
Following [CV], to the data μ & M_1, \ldots, M_n in the definition of GSCA, we associate

1. the skew polynomial ring \mathcal{S} on generators z_1, \ldots, z_n with defining relations:

 $z_j z_i = \mu_{ij} z_i z_j$,

 for all $i \neq j$, and

2. the elements $q_k = z^TM_k z \in \mathcal{S}$ where $z = [z_1 \ldots z_n]^T$.

Definition (Cassidy, Vancliff)

We call any (nonzero) element of \mathcal{S} a quadratic form, and define the quadric $V(q)$, determined by any quadratic form q to be the set of points in $P(\mathcal{S}^*) \times P(\mathcal{S}^*)$ on which q and the defining relations of \mathcal{S} vanish.

If $Q_1, \ldots, Q_m \in \mathcal{S}$, we call their span a quadric system. A quadric system Q is said to be basepoint free (BPF) if $\bigcap q \in Q V(q)$ is empty; Q is said to be normalizing if it is given by a normalizing sequence of \mathcal{S}.
Following [CV], to the data μ & M_1, \ldots, M_n in the definition of GSCA, we associate

1. the skew polynomial ring S on generators z_1, \ldots, z_n with defining relations: $z_jz_i = \mu_{ij}z_iz_j$, for all $i \neq j$, and
Following [CV], to the data μ & M_1, \ldots, M_n in the definition of GSCA, we associate

1. the skew polynomial ring S on generators z_1, \ldots, z_n with defining relations: $z_jz_i = \mu_{ij}z_i z_j$, for all $i \neq j$, and
2. the elements $q_k = z^T M_k z \in S_2$ where $z = [z_1 \ldots z_n]^T$.
Following [CV], to the data μ & M_1, \ldots, M_n in the definition of GSCA, we associate

1. the skew polynomial ring S on generators z_1, \ldots, z_n with defining relations: $z_jz_i = \mu_{ij}z_i z_j$, for all $i \neq j$, and

2. the elements $q_k = z^T M_k z \in S_2$ where $z = [z_1 \ldots z_n]^T$.

Definition ([Cassidy, Vancliff])

We call any (nonzero) element of S_2 a *quadratic form,*
Following [CV], to the data μ & M_1, \ldots, M_n in the definition of GSCA, we associate

1. the skew polynomial ring S on generators z_1, \ldots, z_n with defining relations: $z_j z_i = \mu_{ij} z_i z_j$, for all $i \neq j$, and

2. the elements $q_k = z^T M_k z \in S_2$ where $z = [z_1 \ldots z_n]^T$.

Definition ([Cassidy, Vancliff])

We call any (nonzero) element of S_2 a **quadratic form**, and define the **quadric**, $V(q)$, determined by any quadratic form q to be the set of points in $\mathbb{P}(S_1^*) \times \mathbb{P}(S_1^*)$ on which q and the defining relations of S vanish.
Following [CV], to the data μ & M_1, \ldots, M_n in the definition of GSCA, we associate

1. the skew polynomial ring S on generators z_1, \ldots, z_n with defining relations: $z_jz_i = \mu_{ij}z_iz_j$, for all $i \neq j$, and

2. the elements $q_k = z^TM_kz \in S_2$ where $z = [z_1 \ldots z_n]^T$.

Definition ([Cassidy, Vancliff])

We call any (nonzero) element of S_2 a **quadratic form**, and define the **quadric**, $\mathcal{V}(q)$, determined by any quadratic form q to be the set of points in $\mathbb{P}(S_1^*) \times \mathbb{P}(S_1^*)$ on which q and the defining relations of S vanish. If $Q_1, \ldots, Q_m \in S_2$, we call their span a **quadric system**.
Following [CV], to the data μ & M_1, \ldots, M_n in the definition of GSCA, we associate

1. the skew polynomial ring S on generators z_1, \ldots, z_n with defining relations: $z_j z_i = \mu_{ij} z_i z_j$, for all $i \neq j$, and

2. the elements $q_k = z^T M_k z \in S_2$ where $z = [z_1 \ldots z_n]^T$.

Definition ([Cassidy, Vancliff])

We call any (nonzero) element of S_2 a **quadratic form**, and define the **quadric**, $\mathcal{V}(q)$, determined by any quadratic form q to be the set of points in $\mathbb{P}(S_1^*) \times \mathbb{P}(S_1^*)$ on which q and the defining relations of S vanish. If $Q_1, \ldots, Q_m \in S_2$, we call their span a **quadric system**. A quadric system Q is said to be basepoint free (BPF) if $\bigcap_{q \in Q} \mathcal{V}(q)$ is empty;
Following [CV], to the data μ & M_1, \ldots, M_n in the definition of GSCA, we associate

1. the skew polynomial ring S on generators z_1, \ldots, z_n with defining relations: $z_jz_i = \mu_{ij}z_iz_j$, for all $i \neq j$, and

2. the elements $q_k = z^T M_k z \in S_2$ where $z = [z_1 \ldots z_n]^T$.

Definition ([Cassidy, Vancliff])

We call any (nonzero) element of S_2 a quadratic form, and define the quadric, $\mathcal{V}(q)$, determined by any quadratic form q to be the set of points in $\mathbb{P}(S_1^*) \times \mathbb{P}(S_1^*)$ on which q and the defining relations of S vanish. If $Q_1, \ldots, Q_m \in S_2$, we call their span a quadric system. A quadric system Q is said to be basepoint free (BPF) if $\bigcap_{q \in Q} \mathcal{V}(q)$ is empty; Q is said to be normalizing if it is given by a normalizing sequence of S.
Theorem ([Cassidy, Vancliff])

A GSCA $A = A(\mu, M_1, \ldots, M_n)$ is a quadratic, Auslander-regular algebra of global dimension n that satisfies the Cohen-Macaulay property with Hilbert series $1/(1 - t)^n$ iff

the quadric system associated to M_1, \ldots, M_n is normalizing & BPF; in this case, A is a noetherian AS-regular domain and is unique up to isomorphism.
Theorem ([Cassidy, Vancliff])

A GSCA \(A = A(\mu, M_1, \ldots, M_n) \) is a quadratic, Auslander-regular algebra of global dimension \(n \) that satisfies the Cohen-Macaulay property with Hilbert series \(1/(1 - t)^n \) iff the quadric system associated to \(M_1, \ldots, M_n \) is normalizing & BPF;
Theorem ([Cassidy, Vancliff])

A GSCA $A = A(\mu, M_1, \ldots, M_n)$ is a quadratic, Auslander-regular algebra of global dimension n that satisfies the Cohen-Macaulay property with Hilbert series $1/(1 - t)^n$ iff the quadric system associated to M_1, \ldots, M_n is normalizing & BPF; in this case, A is a noetherian AS-regular domain and is unique up to isomorphism.
Quadratic Quantum Planes

Returning to the classification of quadratic regular algebras D of global dimension 3....
Quadratic Quantum Planes

Returning to the classification of quadratic regular algebras D of global dimension 3.... The classification depends on the point scheme X of D: either $X \subseteq \mathbb{P}^2$ contains a line or it does not. The latter case, splits into 3 subcases, so in total we have 4 cases:

- X contains a line
- X is a nodal cubic curve in \mathbb{P}^2
- X is a cuspidal cubic curve in \mathbb{P}^2
- X is an elliptic curve in \mathbb{P}^2.

Note: our work attempts to classify all quadratic regular algebras D of global dimension 3; not only the generic ones.
Quadratic Quantum Planes

Returning to the classification of quadratic regular algebras D of global dimension 3. The classification depends on the point scheme X of D: either $X \subseteq \mathbb{P}^2$ contains a line or it does not.
Quadratic Quantum Planes

Returning to the classification of quadratic regular algebras D of global dimension 3.... The classification depends on the point scheme X of D: either $X \subseteq \mathbb{P}^2$ contains a line or it does not. The latter case, splits into 3 subcases, so in total we have 4 cases:
Quadratic Quantum Planes

Returning to the classification of quadratic regular algebras D of global dimension 3.... The classification depends on the point scheme X of D: either $X \subseteq \mathbb{P}^2$ contains a line or it does not. The latter case, splits into 3 subcases, so in total we have 4 cases:

- X contains a line

Note: our work attempts to classify all quadratic regular algebras D of global dimension 3; not only the generic ones.
Quadratic Quantum Planes

Returning to the classification of quadratic regular algebras D of global dimension 3.... The classification depends on the point scheme X of D: either $X \subseteq \mathbb{P}^2$ contains a line or it does not. The latter case, splits into 3 subcases, so in total we have 4 cases:

- X contains a line
- X is a nodal cubic curve in \mathbb{P}^2
Quadratic Quantum Planes

Returning to the classification of quadratic regular algebras D of global dimension 3.... The classification depends on the point scheme X of D: either $X \subseteq \mathbb{P}^2$ contains a line or it does not. The latter case, splits into 3 subcases, so in total we have 4 cases:

- X contains a line
- X is a nodal cubic curve in \mathbb{P}^2
- X is a cuspidal cubic curve in \mathbb{P}^2
Quadratic Quantum Planes

Returning to the classification of quadratic regular algebras \(D \) of global dimension 3.... The classification depends on the point scheme \(X \) of \(D \): either \(X \subseteq \mathbb{P}^2 \) contains a line or it does not. The latter case, splits into 3 subcases, so in total we have 4 cases:

- \(X \) contains a line
- \(X \) is a nodal cubic curve in \(\mathbb{P}^2 \)
- \(X \) is a cuspidal cubic curve in \(\mathbb{P}^2 \)
- \(X \) is an elliptic curve in \(\mathbb{P}^2 \).
Quadratic Quantum Planes

Returning to the classification of quadratic regular algebras \(D \) of global dimension 3.... The classification depends on the point scheme \(X \) of \(D \): either \(X \subseteq \mathbb{P}^2 \) contains a line or it does not. The latter case, splits into 3 subcases, so in total we have 4 cases:

- \(X \) contains a line
- \(X \) is a nodal cubic curve in \(\mathbb{P}^2 \)
- \(X \) is a cuspidal cubic curve in \(\mathbb{P}^2 \)
- \(X \) is an elliptic curve in \(\mathbb{P}^2 \).

Note: our work attempts to classify all quadratic regular algebras \(D \) of global dimension 3; not only the generic ones.

M. Vancliff (vancliff@uta.edu)
J. Algebra 346 (2011), 152-164
uta.edu/math/vancliff
Theorem (char(\(k\)) \(\neq 2\))

If \(X\) contains a line, then either \(D\) is a twist, by an automorphism, of a GSCA,

\[\lambda x_1 x_2 = x_2 x_1, \lambda x_2 x_3 = x_3 x_2 - x_2^2, \lambda x_3 x_1 = x_1 x_3 - x_2^2,\]

where \(\lambda \in k\) and \(\lambda (\lambda^3 - 1) \neq 0\).

Moreover, for any such \(\lambda\), any quadratic algebra with these defining relations is regular & its point scheme \(X\) is a nodal cubic curve in \(\mathbb{P}^2\).
Theorem \((\text{char}(k) \neq 2)\)

If \(X\) *contains a line, then either* \(D\) *is a twist, by an automorphism, of a GSCA, or* \(D\) *is a twist, by a twisting system, of an Ore extension of a regular GSCA of gldim 2.*
Theorem (\(\text{char}(k) \neq 2\))

If \(X\) contains a line, then either \(D\) is a twist, by an automorphism, of a GSCA, or \(D\) is a twist, by a twisting system, of an Ore extension of a regular GSCA of gldim 2.

Theorem

If \(X\) is a nodal cubic curve, then \(D = k[x_1, x_2, x_3]\) with defining relations:

\[
\lambda x_1 x_2 = x_2 x_1, \quad \lambda x_2 x_3 = x_3 x_2 - x_1^2, \quad \lambda x_3 x_1 = x_1 x_3 - x_2^2,
\]

where \(\lambda \in k\) and \(\lambda(\lambda^3 - 1) \neq 0\).
Theorem ($\text{char}(\mathbb{k}) \neq 2$)

If X contains a line, then either D is a twist, by an automorphism, of a GSCA, or D is a twist, by a twisting system, of an Ore extension of a regular GSCA of gldim 2.

Theorem

If X is a nodal cubic curve, then $D = \mathbb{k}[x_1, x_2, x_3]$ with defining relations:

$$\lambda x_1 x_2 = x_2 x_1, \quad \lambda x_2 x_3 = x_3 x_2 - x_1^2, \quad \lambda x_3 x_1 = x_1 x_3 - x_2^2,$$

where $\lambda \in \mathbb{k}$ and $\lambda(\lambda^3 - 1) \neq 0$. Moreover, for any such λ, any quadratic algebra with these defining relations is regular & its point scheme X is a nodal cubic curve in \mathbb{P}^2.

M. Vancliff (vancliff@uta.edu)
Theorem (char(\(k\)) ≠ 2)

If \(X\) contains a line, then either \(D\) is a twist, by an automorphism, of a GSCA, or \(D\) is a twist, by a twisting system, of an Ore extension of a regular GSCA of gldim 2.

Theorem

If \(X\) is a nodal cubic curve, then \(D = k[x_1, x_2, x_3]\) with defining relations:

\[
\lambda x_1x_2 = x_2x_1, \quad \lambda x_2x_3 = x_3x_2 - x_1^2, \quad \lambda x_3x_1 = x_1x_3 - x_2^2,
\]

where \(\lambda \in k\) and \(\lambda(\lambda^3 - 1) \neq 0\). Moreover, for any such \(\lambda\), any quadratic algebra with these defining relations is regular & its point scheme \(X\) is a nodal cubic curve in \(\mathbb{P}^2\).

Suppose \(\text{char}(k) \neq 2\).

- If \(\lambda^3 \notin \{0, 1\}\), then \(D\) is an Ore extn of a regular GSCA of gldim 2;
Theorem (char(\mathbb{k}) \neq 2)

If \(X \) contains a line, then either \(D \) is a twist, by an automorphism, of a GSCA, or \(D \) is a twist, by a twisting system, of an Ore extension of a regular GSCA of gldim 2.

Theorem

If \(X \) is a nodal cubic curve, then \(D = \mathbb{k}[x_1, x_2, x_3] \) with defining relations:

\[
\lambda x_1 x_2 = x_2 x_1, \quad \lambda x_2 x_3 = x_3 x_2 - x_1^2, \quad \lambda x_3 x_1 = x_1 x_3 - x_2^2,
\]

where \(\lambda \in \mathbb{k} \) and \(\lambda(\lambda^3 - 1) \neq 0 \). Moreover, for any such \(\lambda \), any quadratic algebra with these defining relations is regular & its point scheme \(X \) is a nodal cubic curve in \(\mathbb{P}^2 \).

Suppose char(\mathbb{k}) \neq 2.

- If \(\lambda^3 \notin \{0, 1\} \), then \(D \) is an Ore extn of a regular GSCA of gldim 2;
- if \(\lambda^3 = -1 \), then \(D \) is a GSCA.
Theorem

\(X = \text{cuspidal cubic curve in } \mathbb{P}^2 \text{ iff } \text{char}(k) \neq 3 \) & \(D = k[x_1, x_2, x_3] \) with def rels:

\[
\begin{align*}
 x_1x_2 &= x_2x_1 + x_1^2, \\
 x_3x_1 &= x_1x_3 + x_1^2 + 3x_2^2, \\
 x_3x_2 &= x_2x_3 - 3x_2^2 - 2x_1x_3 - 2x_1x_2.
\end{align*}
\]

(Moreover, any such algebra is regular, even if \(\text{char}(k) = 3 \).)
Theorem

\(X = \text{cuspidal cubic curve in } \mathbb{P}^2 \) iff \(\text{char}(k) \neq 3 \) & \(D = k[x_1, x_2, x_3] \) with def rels:

\[
\begin{align*}
x_1 x_2 &= x_2 x_1 + x_1^2, \\
x_3 x_1 &= x_1 x_3 + x_1^2 + 3x_2^2, \\
x_3 x_2 &= x_2 x_3 - 3x_2^2 - 2x_1 x_3 - 2x_1 x_2.
\end{align*}
\]

(Moreover, any such algebra is regular, even if \(\text{char}(k) = 3 \).)

If \(\text{char}(k) \neq 2 \) & \(X = \text{cuspidal cubic curve} \), then \(D \) is an Ore extn of a regular GSCA of gldim 2.
Theorem

\[X = \text{cuspidal cubic curve in } \mathbb{P}^2 \text{ iff } \text{char}(k) \neq 3 \text{ & } D = k[x_1, x_2, x_3] \text{ with def rels:} \]

\[x_1 x_2 = x_2 x_1 + x_1^2, \quad x_3 x_1 = x_1 x_3 + x_1^2 + 3x_2^2, \quad x_3 x_2 = x_2 x_3 - 3x_2^2 - 2x_1 x_3 - 2x_1 x_2. \]

Moreover, any such algebra is regular, even if \(\text{char}(k) = 3 \).

If \(\text{char}(k) \neq 2 \) & \(X = \text{cuspidal cubic curve} \), then \(D \) is an Ore extn of a regular GSCA of \(\text{gldim} \ 2 \).

It remains to consider \(X = \text{elliptic curve in } \mathbb{P}^2 \).
Theorem

\(X = \text{cuspidal cubic curve in } \mathbb{P}^2 \text{ iff } \text{char}(k) \neq 3 \& D = k[x_1, x_2, x_3] \text{ with def rels:} \)

\[
\begin{align*}
x_1x_2 &= x_2x_1 + x_1^2, \\
x_3x_1 &= x_1x_3 + x_1^2 + 3x_2^2, \\
x_3x_2 &= x_2x_3 - 3x_2^2 - 2x_1x_3 - 2x_1x_2.
\end{align*}
\]

(Moreover, any such algebra is regular, even if \(\text{char}(k) = 3 \).)

If \(\text{char}(k) \neq 2 \& X = \text{cuspidal cubic curve} \), then \(D \) is an Ore extn of a regular GSCA of gl.dim 2.

It remains to consider \(X = \text{elliptic curve in } \mathbb{P}^2. \)

In [AS, ATV1], such algebras are classified into types A, B, E, H, where some members of each type might not have an elliptic curve as their point scheme, but a generic member does.
Theorem (char(\(k \)) \neq 2)

Suppose \(X \) is an elliptic curve.
Theorem ($\text{char}(k) \neq 2$)

Suppose X is an elliptic curve.

(i) Regular algebras of type H are GSCAs.
Theorem ($\text{char}(\mathbb{k}) \neq 2$)

Suppose X is an elliptic curve.

(i) Regular algebras of type H are GSCAs.

(ii) Regular algebras of type B are GSCAs.
Theorem ($\text{char}(\mathbb{k}) \neq 2$)

Suppose X is an elliptic curve.

(i) Regular algebras of type H are GSCAs.

(ii) Regular algebras of type B are GSCAs.

(iii) As in [AS, ATV1], regular algebras D of type A are given by

$D = \mathbb{k}[x, y, z]$ with def rels:

\begin{align*}
axy + byx + cz^2 &= 0, \\
ayz + bzy + cx^2 &= 0, \\
atz + bxz + cy^2 &= 0,
\end{align*}

where $a, b, c \in \mathbb{k}$, $abc \neq 0$, $3abc \neq (a^3 + b^3 + c^3)^3$, $\text{char}(\mathbb{k}) \neq 3$, and either $a^3 \neq b^3$, or $a^3 \neq c^3$, or $b^3 \neq c^3$.

- If $a^3 = b^3 \neq c^3$, then D is a GSCA.
- If $a^3 \neq b^3 = c^3$ or if $a^3 = c^3 \neq b^3$, then D is a twist, by an automorphism, of a GSCA.

In (iii), $a^3 \neq b^3 \neq c^3 \neq a^3$ is still open.
Theorem (char(\(k\)) \(\neq 2\))

Suppose \(X\) is an elliptic curve.

(i) Regular algebras of type \(H\) are GSCAs.

(ii) Regular algebras of type \(B\) are GSCAs.

(iii) As in [AS, ATV1], regular algebras \(D\) of type \(A\) are given by

\[D = k[x, y, z]\] with def rels:

\[axy + byx + cz^2 = 0, \quad ayz + bzy + cx^2 = 0, \quad azx + bxz + cy^2 = 0,\]

where \(a, b, c \in k\),

M. Vancliff (vancliff@uta.edu)
Theorem ($\text{char}(\mathbb{k}) \neq 2$)

Suppose X is an elliptic curve.

(i) Regular algebras of type H are GSCAs.

(ii) Regular algebras of type B are GSCAs.

(iii) As in [AS, ATV1], regular algebras D of type A are given by

$$D = \mathbb{k}[x, y, z] \text{ with def rels:}$$

$$axy + byx + cz^2 = 0, \quad ayz + bzy + cx^2 = 0, \quad azx + bxz + cy^2 = 0,$$

where $a, b, c \in \mathbb{k}$, $abc \neq 0$, $(3abc)^3 \neq (a^3 + b^3 + c^3)^3$, $\text{char}(\mathbb{k}) \neq 3$.
Theorem (char(\(\mathbb{k}\)) \(\neq 2\))

Suppose \(X\) is an elliptic curve.

(i) Regular algebras of type \(H\) are GSCAs.

(ii) Regular algebras of type \(B\) are GSCAs.

(iii) As in [AS, ATV1], regular algebras \(D\) of type \(A\) are given by

\[
D = \mathbb{k}[x, y, z] \text{ with def rels:}
\]

\[
axy + byx + cz^2 = 0, \quad ayz + bzy + cx^2 = 0, \quad azx + bxz + cy^2 = 0,
\]

where \(a, b, c \in \mathbb{k}, \; abc \neq 0, \; (3abc)^3 \neq (a^3 + b^3 + c^3)^3, \; \text{char}(\mathbb{k}) \neq 3\)

& either \(a^3 \neq b^3\), or \(a^3 \neq c^3\), or \(b^3 \neq c^3\).
Theorem (\(\text{char}(k) \neq 2 \))

Suppose \(X \) is an elliptic curve.

(i) Regular algebras of type \(H \) are GSCAs.

(ii) Regular algebras of type \(B \) are GSCAs.

(iii) As in [AS, ATV1], regular algebras \(D \) of type \(A \) are given by

\[
D = k[x, y, z] \text{ with def rels:}
\]

\[
axy + byx + cz^2 = 0, \quad ayz + bzy + cx^2 = 0, \quad azx + bxz + cy^2 = 0,
\]

where \(a, b, c \in k, \ abc \neq 0, \ (3abc)^3 \neq (a^3 + b^3 + c^3)^3, \ \text{char}(k) \neq 3 \)

& either \(a^3 \neq b^3 \), or \(a^3 \neq c^3 \), or \(b^3 \neq c^3 \).

- If \(a^3 = b^3 \neq c^3 \), then \(D \) is a GSCA.
Theorem (\(\text{char}(\mathbb{k}) \neq 2 \))

Suppose \(X \) is an elliptic curve.

(i) Regular algebras of type H are GSCAs.

(ii) Regular algebras of type B are GSCAs.

(iii) As in [AS, ATV1], regular algebras \(D \) of type A are given by

\[
D = \mathbb{k}[x, y, z] \text{ with def rels:}
\]

\[
axy + byx + cz^2 = 0, \quad ayz + bzy + cx^2 = 0, \quad azx + bxz + cy^2 = 0,
\]

where \(a, b, c \in \mathbb{k}, \ abc \neq 0, \ (3abc)^3 \neq (a^3 + b^3 + c^3)^3, \ \text{char}(\mathbb{k}) \neq 3 \)

& either \(a^3 \neq b^3, \) or \(a^3 \neq c^3, \) or \(b^3 \neq c^3. \)

- If \(a^3 = b^3 \neq c^3, \) then \(D \) is a GSCA.

- If \(a^3 \neq b^3 = c^3 \) or if \(a^3 = c^3 \neq b^3, \) then \(D \) is a twist, by an automorphism, of a GSCA.
Theorem ($\text{char}(k) \neq 2$)

Suppose X is an elliptic curve.

(i) Regular algebras of type H are GSCAs.

(ii) Regular algebras of type B are GSCAs.

(iii) As in [AS, ATV1], regular algebras D of type A are given by

$$D = \mathbb{k}[x, y, z] \text{ with def rels:}$$

$$axy + byx + cz^2 = 0, \quad ayz + bzy + cx^2 = 0, \quad azx + bzx + cy^2 = 0,$$

where $a, b, c \in \mathbb{k}$, $abc \neq 0$, $(3abc)^3 \neq (a^3 + b^3 + c^3)^3$, $\text{char}(k) \neq 3$ & either $a^3 \neq b^3$, or $a^3 \neq c^3$, or $b^3 \neq c^3$.

- If $a^3 = b^3 \neq c^3$, then D is a GSCA.

- If $a^3 \neq b^3 = c^3$ or if $a^3 = c^3 \neq b^3$, then D is a twist, by an automorphism, of a GSCA.

In (iii), $a^3 \neq b^3 \neq c^3 \neq a^3$ is still open.
Remarks & Questions

- Up to isomorphism & anti-isomorphism, type E consists of at most 1 algebra;
Remarks & Questions

- Up to isomorphism & anti-isomorphism, type E consists of at most 1 algebra; it is still open whether or not this type is directly related to a GSCA.
Remarks & Questions

- Up to isomorphism & anti-isomorphism, type E consists of at most 1 algebra; it is still open whether or not this type is directly related to a GSCA.

- If D is a regular algebra of type A or E, then its Koszul dual is the quotient of a regular GSCA; so, in this sense, such algebras are weakly related to GSCAs.
Remarks & Questions

- Up to isomorphism & anti-isomorphism, type E consists of at most 1 algebra; it is still open whether or not this type is directly related to a GSCA.

- If D is a regular algebra of type A or E, then its Koszul dual is the quotient of a regular GSCA; so, in this sense, such algebras are weakly related to GSCAs.

- Can cubic regular algebras of gldim 3 be classified using GSCAs?
Remarks & Questions

- Up to isomorphism & anti-isomorphism, type E consists of at most 1 algebra; it is still open whether or not this type is directly related to a GSCA.

- If D is a regular algebra of type A or E, then its Koszul dual is the quotient of a regular GSCA; so, in this sense, such algebras are weakly related to GSCAs.

- Can cubic regular algebras of gldim 3 be classified using GSCAs?

- Can quadratic regular algebras of gldim 4 be classified using GSCAs?