Examples of Non-local Interactions in Biomathematical Models: Some Properties from Analysis and Simulation

Abstract: Biology returns something of value to mathematics via new classes of mathematical problems to study. In this talk I will discuss two topical areas leading to nonlinear partial differential-integral equations, where the defining characteristic is non-local interactions between dynamic populations of one sort or another. My first topic concerns a neural field involving populations of nerve cells organized in layers. As one example question, I will discuss, for a two-layer model, dependence of the shape of traveling wave solutions on a network parameter and a cellular parameter. As a second topic, I will introduce ‘degeneracy’ into population dynamics. Numerous biological interactions, such as interactions between T cell receptors with antigens, interactions between enzymes and substrates, or interactions between predators and prey are not strictly specific. This less specific, or “sloppy”, specificity is called ‘degeneracy’. I will investigate the concept through generalizing the Lotka-Volterra and Verhulst population models, and highlight some effects of the degeneracy. I will also briefly mention other problems and questions to explore.

(Some of this work is collaborative with Sittipong Ruktamatukul and Yongwimon Lenbury, Mahidol University, Bangkok, and Sergei Atamas, UMB Medical School.)