Curie temperatures of annealed FePt nanoparticle systems

Chuan-Bing Rong, Yang Li, and J. Ping Liu

Department of Physics, University of Texas at Arlington, Arlington, Texas 76019

(Presented on 8 January 2007; received 26 October 2006; accepted 21 November 2006; published online 28 March 2007)

The chemically synthesized FePt_{100−x} nanoparticles with controlled compositions were annealed to transfer the disordered face-centered-cubic structure to the ordered structure. It was found that the L1₀ FePt phase can be formed in the wide compositional region of x=40–68, and lower or higher Fe content leads to formation of the L1₂ FePt_x or Fe_xPt phase, respectively. The Néel temperature of L1₂ FePt_x phase and Curie temperatures (T_C) of L1₀ FePt and L1₂ Fe_xPt phases are all strongly composition dependent. The room-temperature saturation magnetization has an abnormal dependence on x which is caused by the low T_C of Fe_xPt phase with x=75–79. The big difference in T_C between the heating and cooling thermomagnetic curves of the Fe–Pt alloys with x=79–90 can be attributed to the difference of α⇔γ phase transition temperature during heating and cooling. On the other hand, T_C of the L1₀ FePt nanoparticles was found to be strongly size dependent.

I. INTRODUCTION

The interesting magnetic properties of the bulk Fe_xPt_{100−x} materials have been studied in the whole compositional region. For x=25 antiferromagnetic order was found;^{1,2} around x=50 the alloy shows very large magnetic anisotropy owing to the formation of chemically ordered face-centered-tetragonal (fcct) structure.^{3,4} Near x=75 large volume instability (Invar effect) is observed in the L1₂ Fe_xPt phase (γ₁).^{5,6} The most recent interests in FePt nanostructured materials have been focused on the ferromagnetic L1₀ FePt phase (γ₂) because of their potential applications in ultrahigh-density magnetic recording,^{7,8} and advanced permanent magnets^{9,10} due to its very high uniaxial magnetocrystalline anisotropy and high Curie temperatures. Recently, it was reported that Curie temperature (T_C) of sputtered FePt films is composition dependent in the range of 47.5–54.4 at. % Fe.^{11–13} More interestingly, reduction of T_C with decreasing dimension of the materials has also been observed in L1₀ FePt nanoparticles¹⁴ and other ferromagnets.^{15,16} In order to understand magnetic ordering of the nanostructured ferromagnetic phases in a wide compositional range, the annealed FePt nanocrystalline films deposited by nanoparticles have been studied with a composition range of 15–90 at. % Fe. The size dependence of T_C of L1₀ FePt nanoparticles has also been studied.

II. EXPERIMENTS

The disordered face-centered-cubic (fcc) Fe_xPt_{100−x} nanoparticles were chemically synthesized by the standard airless chemical solution procedures.^{7,17} The composition was controlled by adjusting the molar ratio of iron pentacarbonyl Fe(CO)₅ to platinum acetylacetone Pt(acac)₂. The synthesized nanoparticles were then deposited on a Si substrate and annealed under forming gas (Ar+7%H₂) at 973 K for 1 h to transfer the disordered fcc structure to the ordered L1₀ or L1₂ structure. The composition of the synthesized FePt nanoparticles was checked by energy dispersive x-ray (EDX) analysis. The crystalline structure was determined by x-ray diffraction (XRD). The room-temperature magnetic properties were studied by a superconducting quantum interference device (SQUID) magnetometer with a maximum applied field of 7 T. Thermomagnetic curves were measured by a physical property measurement system (PPMS) with high-temperature vibrating sample magnetometer.

III. RESULTS AND DISCUSSIONS

Figure 1 gives the composition dependence of the 4 nm synthesized FePt_{100−x} nanoparticles on the molar ratio of Fe(CO)₅ to Pt(acac)₂. The error bar is based on the statistical standard deviation of the EDX analysis. It shows that the composition x=15–90 can be obtained by adjusting the molar ratio of precursors. This result is similar to that of Ref. 17.

![FIG. 1. The dependence of x on the molar ratio of Fe(CO)₅ to Pt(acac)₂.](Image:340x78 to 532x249)
XRD patterns of Fe$_{x}$Pt$_{100-x}$ films were recorded after being annealed at 973 K in forming gas for 1 h. Figure 2 shows the XRD patterns of the annealed films with five different compositions $x=25$, 59, 72, 79, and 90. A typical XRD pattern for the as-synthesized nanoparticles is also shown in the figure for comparison. It should be noted that XRD spectra of all the as-synthesized samples showed a disordered γ phase in the whole compositional region. When the as-synthesized films were annealed at 973 K, on the other hand, Fe$_{25}$Pt$_{75}$ exhibits a Cu$_3$Au-type γ_2-FePt$_3$ phase with $L1_2$ structure. It was found that for the annealed Fe$_{50}$Pt$_{41}$ film the superlattice reflections (001) and (110) appear in the XRD spectra, indicating the formation of an ordered $L1_2$ γ_2-FePt phase. For Fe$_{75}$Pt$_{25}$, the annealing resulted in the formation of $L1_2$ γ_2-FePt$_3$ phase. With increasing Fe content to $x=79$, XRD pattern revealed that the main phase was γ-FePt phase with fcc structure, while a small amount of α-(Fe,Pt) was also found. Further increase of Fe content led to a decrease of γ-FePt phase content and an increase of α-FePt phase content. When $x=90$, the annealed films consisted of only α-FePt phase, as shown in Fig. 1. In general, the peak broadening of the annealed Fe$_{x}$Pt$_{100-x}$ films became less pronounced compared to the as-synthesized nanoparticles since the grains became coarse upon annealing. The average grain size was 4 nm for the as-synthesized nanoparticles, while it was around 10–20 nm after annealing on Si substrates, determined by the analysis of XRD patterns using Scherrer formula.

Figure 3 shows the dependence of Neél temperature T_N or Curie temperature T_C on composition of the annealed nanoparticles. The magnetic phase transition temperatures were determined by the intersection of extrapolations of the greatest slope and flat region in the M-T curves. It was reported that FePt$_3$ is antiferromagnetic in the chemically ordered state. The XRD patterns show that the ordered phase FePt$_3$ with Cu$_3$Au cubic $L1_2$ structure can be obtained when $x \leq 40$, which is similar to the condition shown in the phase diagram. It was found that T_N of the FePt$_3$ phase increased with increasing Fe content. An ordered fct FePt ferromagnetic phase with $L1_0$ structure formed within the compositional region $x=40$–69. T_C of the fct phase increased fast when $x \leq 50$ and reached the maximum about 730 K when $x=51$–64 and then dropped with increasing x. For $69 \leq x \leq 78$, Fe$_x$Pt phase with $L1_2$ structure was formed after annealing. It can be seen that T_C decreased dramatically from 550 K with $x=70$ to 310 K with $x=79$. More interestingly, it was found that there is a big difference between the heating and cooling thermomagnetic curves of the Fe–Pt alloys with Fe content of 80–90 at.%. Figure 4 shows the typical heating and cooling M-T curves of the Fe$_{80}$Pt$_{20}$ sample. This phenomenon can be attributed to the difference of $\alpha \leftrightarrow \gamma$ phase transition temperature during heating and cooling. One can see from the Fe–Pt phase diagram that the phase transitional temperature from α to γ phase on heating is far higher than that of γ to α on cooling.

Figure 5 gives the dependence of saturation magnetization M_s and coercivity H_c on the composition of annealed nanoparticles. M_s at room temperature, which was measured under 7 T, increases monotonously almost in the whole compositional region except in the region 75 $\leq x \leq 79$ where M_s of the Fe$_x$Pt phase drops. This is caused by the low Curie
temperature (near or lower than room temperature) of Fe3Pt phase in this special compositional region since there is no dip in the M_r-x curve at 100 K, as shown in Fig. 5. H_c is also very sensitive to composition. Nonzero coercivity can be obtained elsewhere.14 The size dependent behavior, as discussed in Refs. 14–16, can be explained by the finite-size-scaling theory.21,22

Beside the composition dependence, it was also found that T_C decreases fast with decreasing dimensions of the materials. Our recently developed salt-matrix annealing method20 allows us to tune the size of the monodisperse $L1_0$ FePt nanoparticles and to obtain a direct correlation between particle size and Curie temperature. Figure 6 shows M-T curves of the 3 and 15 nm $L1_0$ FePt nanoparticles which are obtained by the salt-matrix. It shows that T_C of the 3 nm nanoparticles is substantially lower than that of 15 nm particles. A systematic study of the size dependence of T_C has been reported elsewhere.14 The size dependent behavior, as discussed in Refs. 14–16, can be explained by the finite-size-scaling theory.21,22

\section*{IV. CONCLUSION}

The FePt nanoparticles with controlled composition have been prepared by chemical synthesis. The ordered phases with different structures were obtained by annealing the particles at 973 K for 1 h. It is found that the $L1_0$ FePt structure can be formed in a wide compositional region of x=40–68, while the FePt$_3$ or Fe$_3$Pt with $L1_2$ structure are formed with lower or higher Fe contents. The Curie temperatures of the $L1_0$ FePt phase are strongly composition dependent and are higher than that of Fe3Pt phase. The abnormal dependence of M_s at room temperature on x is caused by the low T_C of Fe3Pt phase with x=75–79. It was also found that there is a big difference in T_C when measured through the heating and cooling thermomagnetic curves of the Fe–Pt alloys with x=78–90. This phenomenon can be attributed to the difference of $\alpha\Leftrightarrow\gamma$ phase transition temperature during heating and cooling. On the other hand, T_C of the $L1_0$ FePt particles is strongly size dependent.

\section*{ACKNOWLEDGMENTS}

This work was supported by US DoD/MURI Grant No. N00014-05-1-0497 and DARPA through ARO under Grant No. DAAD 19-03-1-0038.

\begin{thebibliography}{10}

\bibitem{19} J. Martelly, Ann. Phys. (N.Y.) 9, 318 (1938).
\bibitem{21} K. Binder, Physica (Amsterdam) 62, 508 (1972).
\end{thebibliography}