Chemistry 1451 Chemistry for Health Sciences
Section 001 Date, Time, and Place

Instructor: Dr. Seiichiro Tanizaki
Office Hours are Time or by appointment.
303 B Science Hall, 817.272.1056, tanizaki@uta.edu.

Course Description: Survey of general, organic, and biochemistry with emphasis on applications to the human body. Measurement, atomic theory and structure, bonding, quantitative relationships in chemical reactions, gases, solutions, electrolytes, organic functional groups and nomenclature, organic reactions, carbohydrates, lipids, proteins, enzymes, metabolism, and nucleic acids.

This course satisfies the University of Texas at Arlington core curriculum requirement in life and physical sciences. The italicized student learning outcomes required of core courses below will be assessed for each student in the laboratory portion of the course. The lab report will be assessed to determine how a student has mastered critical thinking, communication, and empirical and quantitative skills. A teamwork assessment (peer evaluation) will be completed by each student in lab to determine how students work together in lab groups to achieve the student learning outcomes described below.

Student Learning Outcomes:

• Upon completing the course, the student should be able to understand major concepts in general, organic and biochemistry. (More detailed learning objectives are given in separate handout available in Blackboard course sites.) (General Chemistry)
 To understand scientific measurement, atomic theory and structure, chemical bonding, quantitative relationship in chemical reactions, and acid-base chemistry. (Organic Chemistry) To understand nomenclature, chemical reactions and properties of organic compounds. (Biochemistry) To understand molecular structures, chemical reactions and properties of carbohydrates, lipids, and proteins. If time permits, chemistry of nucleic acids will be included.

• The student collects data for the change in the mass during a chemical reaction. They calculate the theoretical yield and percent yield for different combinations in amounts of reactants. They discuss the concept of equivalent amount, limiting reagent, and excess reagent for each run of reactions. (Empirical and Quantitative Skills)

• The student learns the scientific process by designing and conducting experiments, collecting and analyzing data, and presenting results, in both written formats (Critical thinking, Communication)

• The student learns essential laboratory procedures and protocols (Teamwork)

• Critical Thinking Skills: to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information;

• Communication Skills: to include effective development, interpretation and expression of ideas through written, oral and visual communication

• Empirical and Quantitative Skills: to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions

• Teamwork: to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal

The Signature Assignment for satisfying the Core Curriculum Requirement in CHEM 1451 will be UTA Experiment UTA-5: Chemical Reaction.

Required Textbooks and Other Course Materials:

1) The textbook is “Chemistry: An Introduction to General, Organic and Biological Chemistry (11th edition)” by Karen C. Timberlake, Prentice Hall (2012). Whatever option (paper or e-book) you choose, make sure to have an access to the content of the textbook. No other textbook is supported in this course. The textbook is also reserved in the Central Library.

2) Access to the online homework system: MasteringChemistry (www.masteringchemistry.com). You can purchase the access directly online at their website. Read the instructions for Online Homework Registration and Log in in the UTA Blackboard course site (https://elearn.uta.edu). (IMPORTANT: The online homework website is NOT the same as the UTA Blackboard course site. If you are re-taking this course and previously purchased the code, the access code is valid for two years.)

3) The lab manual is “General, Organic and Biological Chemistry CHEM 1451 Lab Manual”. This lab manual is UTA-customized to minimize the cost. It is available only at the UTA bookstore (www.uta.edu/bookstore). The photocopy of the manual will NOT be accepted.

4) A scientific calculator (non-programmable and non-graphing; for example, SHARP EL-501WBBK, CASIO 115, Texas Instrument 30 XIIS).
Course Prerequisites: This course is intended for students pursuing a career in nursing, and all students should have completed MATH 1301, 1302 (College Algebra) or equivalent. To receive credit for CHEM 1451, you must also be enrolled in CHEM 1451 lab. CHEM 1451 cannot be counted for major credit toward a degree in science or engineering.

Student Learning Outcomes: Upon completing the course, the student should be able to understand major concepts in general, organic and biochemistry. (More detailed learning objectives are given in separate handout available in Blackboard course sites.)
1) (General Chemistry) To understand scientific measurement, atomic theory and structure, chemical bonding, quantitative relationship in chemical reactions, and acid-base chemistry.
2) (Organic Chemistry) To understand nomenclature, chemical reactions and properties of organic compounds.
3) (Biochemistry) To understand molecular structures, chemical reactions and properties of carbohydrates, lipids, and proteins. If time permits, chemistry of nucleic acids will be included.

Attendance Policy: Attend every lecture. A very strong correlation exists between attendance and success in Chemistry 1451. Because the topics covered in this course build on each other, missing even one class can mean the difference between success and failure in the course. You must sign on the attendance sheet in class if you attend a class. FALSIFYING YOUR ATTENDANCE, THAT INCLUDES LEAVING A CLASS BEFORE CLASS ENDS, IS CONSIDERED ACADEMIC DISHONESTY AND PROSECUTED AS SUCH.

Expectations for Out-of-Class Study: Spend the necessary amount of time studying chemistry. The rule of thumb for succeeding in Chemistry is three hours of study for every hour of lecture. Since you have 8 hours of lecture per week, this means that at a minimum you should plan to study Chemistry 24 hours each week independently.

Other Requirements:
1) A student must familiarize herself/himself with all requirements and policies in this course of the current semester.
2) Prior to class, read the chapter which will be covered in lecture.
3) Review your lecture notes after each class. Correct obvious errors and note topics which require further study or clarification.
4) Work all of the homework problems. Do not look in the solutions manual until you have given your best effort to solve the problem on your own. Practice the problems that you could not solve until you could solve them without solutions. This is the one of the most effective strategies that you could do to prepare for exams.
5) Don’t procrastinate. These concepts take time to sink in, and you may have to practice these exercises over a period of many days in order master the necessary skills.

Grading: The grade in this course will be determined in the following manner.

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Exams</td>
<td>65%</td>
</tr>
<tr>
<td>Laboratory Average</td>
<td>25%</td>
</tr>
<tr>
<td>Homework</td>
<td>10%</td>
</tr>
</tbody>
</table>

1) You must receive at least a 60 % average in lab to be eligible to pass the course. In other words, if your final lab average is below 60 %, then you will automatically receive F in this course.
2) (Make-up Exam Policy) No make-up exams will be given, and any missed exams will result in a grade of zero. However, the final exam score will replace the lowest score among Exam 1, Exam 2, Exam 3, and Exam 4 if it is to the student’s benefit. For example, if you miss one of midterm exams (Exam 1 through Exam 4), then the score of the missed exam will be replaced by the final exam score. Final exam score will neither be replaced or dropped.
3) There will be no curving on exams or no extra credit assignments in this course to a specific student.
4) If you drop or fail Chemistry 1451, grades earned in the lab cannot be carried over when you re-take Chemistry 1451.
5) All grades are calculated by rounding them off to two decimal places: If the digit to be removed is less than five, then it is rounded down. If the digit to be removed is equal to or larger than five, then it is rounded up. For example, if your calculated final grade is 89.564…, then your final grade is 89.56. Grades will be assigned according to the following scale.

<table>
<thead>
<tr>
<th>Total Numerical Grade</th>
<th>Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 and above</td>
<td>A</td>
</tr>
<tr>
<td>80-less than 90</td>
<td>B</td>
</tr>
<tr>
<td>70-less than 80</td>
<td>C</td>
</tr>
<tr>
<td>60-less than 70</td>
<td>D</td>
</tr>
<tr>
<td>Below 60</td>
<td>F</td>
</tr>
</tbody>
</table>
Major Assignments and Examinations

Five exams will be given. These exams will cover the reading, lecture material, homework, and assigned problems. Four mid-term exams (Exam 1 through Exam 4) will be administered in 50 minutes. Final exam will be administered in one and a half hours. Web-based homework problems will be assigned and graded. More information (Registration, Login and Grading Policy) about the online homework system will be given in the Blackboard course site. None of homework assignments will be dropped. All due dates for homework assignments are directly available on the online homework site. You will be responsible for checking them and completing them by the due dates.

Examination Needs

You must bring the following to each examination.

1) Scientific Calculator (You may **not** use a graphing calculator or a calculator capable of storing alpha-numeric/textual material).
2) No. 2 pencils with eraser.
3) NCS Answer Sheet 4521, available at the UTA Bookstore (or, an answer form specified by your instructor).
4) UTA Student ID Card.
5) Students are NOT allowed to have access to digital pagers or cell phones during any exam.

Other Course Policies:

Cell Phones and Pagers (or any un-necessary electronic gadgets)

Silence all cell phones and pagers prior to class. No laptop or un-necessary electronic gadgets are permitted in classroom.

Blackboard

Students are regularly responsible for checking the blackboard course website (https://elearn.uta.edu/) as well as their UTA email (the one ending in "mavs.uta.edu") for correspondence and announcements related to the course. Instructional materials (videos, activity sheets, study guides, etc.) will be posted on the course website.

Electronic Communication

UT Arlington has adopted MavMail as its official means to communicate with students about important deadlines and events, as well as to transact university-related business regarding financial aid, tuition, grades, graduation, etc. All students are assigned a MavMail account and are responsible for checking the inbox regularly. There is no additional charge to students for using this account, which remains active even after graduation. Information about activating and using MavMail is available at http://www.uta.edu/oit/cs/email/mavmail.php.

Drop Policy

Students may drop or swap (adding and dropping a class concurrently) classes through self-service in MyMav from the beginning of the registration period through the late registration period. After the late registration period, students must see their academic advisor to drop a class or withdraw. Undeclared students must see an advisor in the University Advising Center. Drops can continue through a point two-thirds of the way through the term or session. It is the student's responsibility to officially withdraw if they do not plan to attend after registering. **Students will not be automatically dropped for non-attendance.** Repayment of certain types of financial aid administered through the University may be required as the result of dropping classes or withdrawing. For more information, contact the Office of Financial Aid and Scholarships (http://wweb.uta.edu/ses/fao).

Americans with Disabilities Act

The University of Texas at Arlington is on record as being committed to both the spirit and letter of all federal equal opportunity legislation, including the *Americans with Disabilities Act (ADA)*. All instructors at UT Arlington are required by law to provide "reasonable accommodations" to students with disabilities, so as not to discriminate on the basis of that disability. Any student requiring an accommodation for this course must provide the instructor with official documentation in the form of a letter certified by the staff in the Office for Students with Disabilities, University Hall 102. Only those students who have officially documented a need for an accommodation will have their request honored. Information regarding diagnostic criteria and policies for obtaining disability-based academic accommodations can be found at www.uta.edu/disability or by calling the Office for Students with Disabilities at (817) 272-3364.

Academic Integrity

All students enrolled in this course are expected to adhere to the UT Arlington Honor Code:

I pledge, on my honor, to uphold UT Arlington’s tradition of academic integrity, a tradition that values hard work and honest effort in the pursuit of academic excellence.
I promise that I will submit only work that I personally create or contribute to group collaborations, and I will appropriately reference any work from other sources. I will follow the highest standards of integrity and uphold the spirit of the Honor Code.

At UT Arlington, academic dishonesty is completely unacceptable and will not be tolerated in any form, including (but not limited to) “cheating, plagiarism, collusion, the submission for credit of any work or materials that are attributable in whole or in part to another person, taking an examination for another person, any act designed to give unfair advantage to a student or the attempt to commit such acts” (UT System Regents’ Rule 50101, §2.2). Suspected violations of university’s standards for academic integrity (including the Honor code) will be referred to the Office of Student Conduct. Violators will be disciplined in accordance with University policy, which may result in the student’s suspension or expulsion from the University.

Student Feedback Survey: At the end of each term, students enrolled in classes categorized as lecture, seminar, or laboratory shall be directed to complete a Student Feedback Survey (SFS). Instructions on how to access the SFS for this course will be sent directly to each student through MavMail approximately 10 days before the end of the term. Each student’s feedback enters the SFS database anonymously and is aggregated with that of other students enrolled in the course. UT Arlington’s effort to solicit, gather, tabulate, and publish student feedback is required by state law; students are strongly urged to participate. For more information, visit http://www.uta.edu/sfs.

Final Review Week: A period of five class days prior to the first day of final examinations in the long sessions shall be designated as Final Review Week. The purpose of this week is to allow students sufficient time to prepare for final examinations. During this week, there shall be no scheduled activities such as required field trips or performances; and no instructor shall assign any themes, research problems or exercises of similar scope that have a completion date during or following this week unless specified in the class syllabus. During Final Review Week, an instructor shall not give any examinations constituting 10% or more of the final grade, except makeup tests and laboratory examinations. In addition, no instructor shall give any portion of the final examination during Final Review Week. During this week, classes are held as scheduled. In addition, instructors are not required to limit content to topics that have been previously covered; they may introduce new concepts as appropriate.

Lab Safety Training: Students registered for this course must complete all required lab safety training prior to entering the lab and undertaking any activities. Once completed, Lab Safety Training is valid for the remainder of the same academic year (i.e., through the following August) and must be completed anew in subsequent years. There are no exceptions to this University policy. Failure to complete the required training will preclude participation in any lab activities, including those for which a grade is assigned. Instructions for completing lab safety training are given separately in the lab syllabus of this course.

Student Support Services: UT Arlington provides a variety of resources and programs designed to help students develop academic skills, deal with personal situations, and better understand concepts and information related to their courses. Resources include tutoring, major-based learning centers, developmental education, advising and mentoring, personal counseling, and federally funded programs. For individualized referrals, students may contact the Maverick Resource Hotline by calling 817-272-6107, sending a message to resources@uta.edu, or visiting www.uta.edu/resources.

Resources
1) The Chemistry Clinic is located in Room 318 Science Hall and will be staffed with tutors available to answer your questions related to lecture and homework. Hours of the Chemistry Clinic will be announced on the front door of Room 318 SH. This service is free for students enrolled in Chemistry 1451.
2) University College is located in 205 Ransom Hall and offers free academic support for qualifying students and low-cost services for all students, including Cost Share Tutoring.

Bomb Threats: In the event of a bomb threat to a specific facility, University Police will evaluate the threat. If required, exams may be moved to an alternate location, but exams will not be postponed. UT-Arlington will prosecute those phoning in bomb threats to the fullest extent of the law.
Tentative Lecture Schedule: The following represents a tentative schedule of lectures and examination material for this semester. Tentative exam dates are specified in bold. The exact dates of the four midterm exams will be announced in class. All due date of homework assignments are available directly on its website. You will be responsible for checking them and completing them by the due dates. As the instructor for this course, I reserve the right to adjust this schedule in any way that serves the educational needs of the students enrolled in this course. Note that the Final Exam is scheduled for Monday, July 8 from 10:30 AM to 12:00 PM. Make sure to save this date because no make-up final exam will be given.

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture Material (Reading Assignments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td></td>
</tr>
</tbody>
</table>
| 3 | M Course Orientation and begin Chapter 1 “Chemistry and Measurements”.
| 4 | T Chapter 2 “Matter and Energy”. Chapter 3 “Atoms and Elements”.
| 5 | W Finish Chapter 3 and begin Chapter 4 “Compounds and Their Bonds”.
| 6 | R Finish Chapter 4. |
| 10 | M Exam 1 on Chapters 1, 2 and 3. Begin Chapter 5. |
| 11 | T Chapter 5 “Chemical Quantities and Reactions”. |
| 12 | W Chapter 7 “Solutions”. |
| 13 | R Chapter 8 “Acids and Bases”. |
| 17 | M Exam 2 on Chapters 4 and 5. Finish Chapter 8. |
| 18 | T Chapter 10 “Introduction to Organic Chemistry: Alkanes” |
| 19 | W Finish Chapter 10. |
| 20 | R Chapter 11 “Unsaturated Hydrocarbons”. |
| 24 | M Exam 3 on Chapters 7 and 8. Finish Chapter 11. |
| 25 | T Chapter 12 “Organic Compounds with Oxygen and Sulfur”. |
| 26 | W Chapter 14 “Carboxylic Acids, Esters, Amines, and Amides”|
| 27 | R Chapter 13 “Carbohydrates”. |
| 1 | M Exam 4 on Chapters 10, 11, 12 and 14. Finish Chapter 13. |
| 2 | T Chapter 15 “Lipids”. |
| 3 | W Chapter 16 “Amino Acids, Proteins, and Enzymes”. |
| 8 | M Final Exam (Exam 5) on Chapters 13, 15, and 16. |

Important Dates

- **June 06**: Census Date.
- **June 24**: Last Day to Drop Classes: Please review UTA’s Drop Policy in Undergraduate Catalog.
- **July 03**: Last Day of Classes.
- **July 04**: Independence Day Holiday: Classes do not meet.
- **July 08**: Final Exam from 10:30 AM to 12:00 PM.