Boys and Girls Together—and Alienated:
On Enacting Stereotyped Sex Roles in Mixed-Sex Dyads

William Ickes and Richard D. Barnes
University of Wisconsin—Madison

This study was conducted to determine how individual differences in sex role orientation—as assessed by the Bem Sex Role Inventory—were related to subjects' behavior during an initial, unstructured interaction in mixed-sex dyads. The design contrasted four different dyad types, characterized as follows: (a) Both the male and the female were stereotypically sex typed correspondent to their gender (male ST–female ST); (b) the male was stereotypically sex typed as masculine and the female was androgynous (male ST–female A); (c) the male was androgynous and the female was sex typed as feminine (male A–female ST); and (d) both were androgynous (male A–female A). Analyses of the subjects' behavior during the 5-minute interaction period and self-report data collected afterward revealed significantly less interaction and interpersonal attraction in the male ST–female ST dyads than in the other dyad types. The data are discussed in terms of Bem's conception of sex role identification and Snyder's conception of self-monitoring.

The literature on sex role identification suggests that people who adopt a stereotypically

“masculine” sex role may have a much different orientation toward social relationships than those who adopt a stereotypically “feminine” sex role. At the conceptual level, masculinity is typically associated with an instrumental orientation that emphasizes achievement, autonomy, and an active striving for personal control—the type of control that encourages self-discipline, self-monitoring, and the capacity to alter the expression or even the awareness of one's feelings. In contrast, femininity is associated with an expressive orientation that emphasizes communion, commonality, the desire to relate affectively to others, and the awareness and active expression of one's feelings (e.g., Bakan, 1966; Bem,
Sex and Sex Role Differences in Social Behavior

At the empirical level, a number of findings suggest that females are in fact oriented to be more expressive, affiliative, and sociable than males. Results supporting this conclusion have emerged not only from relevant self-report data regarding “appropriate” sex role behavior (e.g., Bern, 1974; Spence, Helmreich, & Stapp, 1975) but also from studies of various aspects of verbal and nonverbal interaction (for reviews, see Argyle, 1969; Bunker, in press; Cozby, 1973; Deaux, 1976; Ellsworth & Ludwig, 1972; Frieze & Ramsey, 1976; Henley, 1977; Maccoby, 1966; Maccoby & Jacklin, 1974; Mehrabian, 1974). In particular, studies comparing the behavior of males and females in same- and mixed-sex groups have yielded strong and consistent evidence that males’ responses are predominantly impersonal and instrumental, whereas females’ responses are predominantly personal and expressive (e.g., Aries, 1976; Piliavin & Martin, in press; Strodtebeck & Mann, 1956). This general finding, unless qualified by such situation-specific factors as the sex typing of the group activity, the individuals’ level of commitment to it, or the particular social roles they are asked to fill (cf. Bunker, in press), appears to hold true not only for the more structured interactions of groups but for relatively unstructured dyadic interactions as well (e.g., Duncan & Fiske, 1977, chapter 4; Ickes & Barnes, 1977; Pilkonis, 1977; Siegman, Note 1).

If such general sex differences in social behavior really do exist, what causes them? Why, in other words, are females more outgoing, expressive, and sociable than males? According to Lippa (1978), one plausible answer to this question is the following:

People actively monitor aspects of their expressive behavior and enforce certain expressive styles on their behavior. The domain of masculinity–femininity is a likely area to search for expressive consistencies since (1) there seem to be specific socially defined expressive cues of masculinity and femininity and (2) in this culture at least, there are strong socialization pressures on people to display ‘appropriate’ sex role behavior. (p. 13)

The research by Bem (1974), Spence et al. (1975), and others leaves little doubt that people are indeed socialized to regard certain traits and behavior as more appropriate for one sex than for the other. In fact, the research suggests that a considerable percentage of the populations tested have actually adopted stereotyped sex role identifications based on their endorsement of the “appropriate” subset of traits and behaviors as self-descriptive. But the public endorsement of a stereotyped sex role is one thing; the behavioral enactment of such a sex role is quite another. What evidence is there to suggest that individuals’ acquired sex role identifications are really manifested in their behavior?

One bit of anecdotal evidence cited by Lippa (1978) is Birdwhistell’s (1970) observation that certain behaviors presumed to be reflective of masculinity or femininity appear at a very early age. More compelling evidence, however, derives from the series of studies conducted by Bem and her colleagues (Bem, 1974; Bem & Lenney, 1976; Bem, Martyna, & Watson, 1976), and from the two studies that Lippa (1978) himself conducted. The results of all of these studies indicate that individuals do indeed “enact” their self-ascribed sex roles, whether they do so consciously or not. The results of Lippa’s studies further suggest (a) that naive judges can reliably rate the masculinity and femininity of stimulus persons on the basis of largely expressive cues and (b) that these “naïve” judgments may correspond significantly to the actual sex typing of the stimulus persons as previously assessed by the Bem Sex Role Inventory.

Other studies that Lippa (1976, in press)
Sex Role Differences and Interpersonal Stress

The ideas we have just developed regarding the behavioral enactment of internalized sex roles suggest an interesting and somewhat counterintuitive implication when they are considered in the context of an unstructured dyadic interaction. In sharp contrast to the traditional assumption that the patterns of behavior prescribed by the stereotyped male and female sex roles are essentially complementary, the present reasoning suggests that they may, in fact, be incompatible. More specifically, in a mixed-sex dyad comprised of a stereotypically sex-typed ("masculine") male and a stereotypically sex-typed ("feminine") female, the enactment of "appropriate" sex role behavior at the individual level may lead to interpersonal stress at the level of the dyad. If the male's masculine sex role leads him to be relatively detached, asocial, and nonexpressive, while the female's feminine sex role leads her to be relatively involved, sociable, and expressive, interpersonal incompatibility and stress of the kind described by Haythorn (1970) could easily result. According to Haythorn (1970),

The relationships between the need patterns of different individuals could be classified for purposes of compatibility analysis as: (1) congruent versus incongruent, (2) complementary versus noncomplementary, and (3) competitive versus noncompetitive. Congruent relationships are those in which similar needs are conducive to mutual need satisfactions, as for example, when two individuals are both affiliation oriented, leading them to interact in mutually satisfying ways. A complementary relationship is one in which individuals with different needs and abilities find their need-oriented behavior mutually satisfying, as when one individual with high dependency needs interacts with another with high nurturant needs. A competitive relationship is one in which an interaction satisfying the needs of one individual frustrates the needs of the other, as when both have high dominance needs or one has a high need for affiliation and the other a high need for autonomy. We would argue here that incongruent, noncomplementary, or competitive dyadic relationships tend to be stress inducing in the sense that, by definition, they frustrate interpersonal needs and are likely to be perceived as threatening to the personality organizations of the individuals concerned. Social isolation and confinement of hypothetically isolated dyads is thought likely to magnify such interpersonal stress because the individuals concerned are neither able to escape each other nor to seek social satisfactions in interaction with alternative others. (pp. 166-167)

In terms of Haythorn's definitions of the three types of social incompatibility and the specific examples of each that he provides, we might expect that the dyadic interactions of stereotypically sex-typed males and females would tend to be incongruent and possibly even competitive, producing interpersonal incompatibility and stress (see Balswick & Peek, 1971, and Safilios-Rothschild, 1977, for conceptually similar analyses that posit the social incompatibility of stereotypically sex-typed males and females). Hypothetically, the sequence of events might occur as follows: The traditionally sex-typed female would presumably expect the male to take the lead in initiating conversation. The male, however, would not be particularly sociable and eager to interact, but instead would be taciturn and probably somewhat unresponsive to conversational stimuli on the part of the female. Non-
verbal differences in sociability would likely add to the lack of synchrony in the two individuals' behavior; the interaction would be experienced as frustrating and stressful to both of them; the amount and quality of interaction would be low; and the amount of mutual liking would probably be relatively low as well.

Interpersonal stress deriving from incompatible response styles should theoretically be less likely to occur when one or both of the individuals in a mixed-sex dyad is androgynous, since the androgynous individual has been shown by Bem and her colleagues (Bem, 1975; Bem & Lenney, 1976; Bem et al., 1976) to have greater sex role adaptability than either the masculine or the feminine individual. Because the androgynous individual can display either masculine or feminine behavior, depending on its situational (as opposed to its sex role) appropriateness, he or she should be able to adapt his or her behavior to interact compatibly with another person regardless of whether the other is stereotypically sex typed or is also androgynous. Thus, in contrast to the type of mixed-sex dyad in which both members are stereotypically sex typed, dyad types in which one or both members are androgynous should evidence little or no interpersonal stress.

We should probably not suppose, however, that interpersonal stress will always characterize the interactions of a masculine sex-typed male and a feminine sex-typed female. Rather, we might expect such stress to be maximal when an initial interaction of this type occurs in a fairly unstructured situation. Under these conditions, individuals would probably be most likely to depend on internalized role conceptions to guide their behavior, since situational cues to define appropriate behavior are lacking. In contrast, in more structured situations or after an extended period of interaction, behavior should increasingly become more a function of the "situation" (which, in the latter case, may also include the interaction itself, as it now provides its own "context," appropriate topics of conversation, etc.) and less a function of the individuals' own "dispositions."

The type of research paradigm developed by Ickes and Barnes (1977) to study dyadic interactions is one in which interpersonal stress of the kind described above should be most likely to occur. It not only permits the observational study of an initial interaction between two strangers but also provides a situational context that is relatively unstructured and presumably facilitates dependence on internalized roles, dispositions, and the like, as guides to behavior. Moreover, it establishes a short-term "confinement" of the two individuals within each dyad so that it is difficult for them to escape each other or to seek alternative interactions with others (Haythorn, 1970). For various reasons, then, this paradigm appeared to be an appropriate one to use in studying the relationship between stereotyped versus androgynous sex roles and behavior in mixed-sex dyadic interactions.

It was predicted, in line with the theory and research reviewed above, that the enactment of "appropriate" sex role behavior would lead to interpersonal incompatibility and stress in the type of dyad comprised by a masculine sex-typed male and a feminine sex-typed female. Much less interpersonal stress was predicted, however, for the types of mixed-sex dyad in which one or both members were androgynous. It might be hypothesized that the type of mixed-sex dyad in which both members are androgynous should evidence the least interpersonal stress, since each person is assumed to be capable of adapting her or his behavior to the other's. However, it is also possible that the uncertainty and interactional instability resulting from such bilateral adaptation may actually create more stress than that which occurs when one androgynous individual unilaterally adapts to a fairly stable, well-defined, stereotypic sex role enacted by the other. Given these two possibilities, an unambiguous prediction could not be made to separate behavior occurring in the dyad type comprised of two androgynous individuals from that occurring in dyad types in which one person was stereotypically sex typed and the other androgynous. Thus, the most unambiguous prediction to be made a priori was that the type of mixed-sex dyad in which both members were stereotypically sex typed according to their gender would evidence more
interpersonal incompatibility and stress in an initial interaction than would the three remaining dyad types in which one or both members were androgynous.

Method

Subjects and Pretesting

The subjects were 43 male and 43 female undergraduates in introductory psychology classes at the University of Wisconsin. They were drawn from a population of 507 students who had been pretested with the Bern Sex Role Inventory (BSRI; Bern, 1974) and Snyder's (1974) Self-Monitoring Scale earlier in the semester. To facilitate the scoring of these pretest data, both measures were administered in a format that permitted subjects to code their responses on standard machine-scorable answer sheets. This necessitated administering the BSRI with a 5-alternative response format (from "never or almost never true" to "always or almost always true") instead of the 7-alternative response format used by Bern (1974).

From the obtained distribution of scores, subjects who were either sex typed correspondent to their gender (i.e., "masculine" males and "feminine" females) or who were sex typed as androgynous were contacted by telephone and scheduled to participate in the study in mixed-sex dyads. Sex typing was determined by computing the difference between each subject's femininity score and her or his masculinity score on the BSRI (cf. Bern, 1974). Male subjects with a difference score of -0.45 or less were classified as masculine; female subjects with a difference score of +0.45 or greater were classified as feminine; and subjects of both sexes whose difference scores ranged between -0.45 and +0.45 were classified as androgynous. These cutoff points corresponded to androgyny difference scores of approximately -0.63 and +0.63 on the original BSRI and to androgyny t ratios of approximately -1.5 and +1.5. Thus, the cutoff points were selected to optimally split the continuous distribution of correspondent sex-typed and androgynous individuals in the buffer range that Bern (1974) has defined as "near-masculine" or "near-feminine."

Design

The design contrasted four different dyad types, each based on the composition of the dyad in terms of the sex role identifications of its members. The four dyad types may be characterized as follows: (a) Both the male and female were stereotypically sex typed correspondent to their gender (male ST–female ST); (b) the male was stereotypically sex typed as masculine and the female was androgynous (male ST–female A); (c) the male was androgynous and the female was sex typed as feminine (male A–female ST); and (d) both were androgynous (male A–female A). In addition to this between-dyads variable, the sex of the subjects within dyads (female vs. male) was analyzed as a within-dyads variable in order to further isolate the source of any obtained results. Within the constraints imposed by dyad type, 10 female–male pairs were randomly assigned to each of the four between-dyads conditions.

Setting and Equipment

The experimental room used as a setting for the study was furnished so that it appeared to be a storage area that had recently been converted into a temporary waiting room (see Ickes & Barnes, 1977, Figure 1, for schematic views of the room arrangement). As in our earlier study, a videotape camera and recorder were concealed behind various experimental paraphernalia that were stacked in a corner of the room across from a couch and coffee table.

Procedure

During the telephone solicitation, a research assistant (who feigned naivety of what the study was about) instructed the subjects to report to specific waiting areas within the psychology building. These areas were physically isolated from each other but were on the same floor as the experimental room described above. At the beginning of each session and prior to meeting each pair of subjects, the experimenter activated the videotape equipment in the experimental room and checked to ensure that it was well concealed and operating properly. She then turned off the lights in the room and collected the two subjects from their respective waiting areas. (The experimenter was kept blind with respect to the subjects' pretest personality scores.)

While conducting the subjects to the experimental room, the experimenter explained that the first part of the study involved filling out copies of a questionnaire but that she had just run out of these and would have to obtain some more. She led the sub-

1 The data for 6 subjects (3 female, 3 male) comprising three of the dyads (one male ST–female ST dyad, one male ST–female A dyad, and one male A–female ST dyad) were not included in the analyses because at least 1 of the subjects in each of these dyads expressed suspicion that the interaction had been videotaped.

2 For reasons discussed elsewhere (Bern, in press; Bern et al., 1976; Spence et al., 1975; Strahan, 1975), "undifferentiated" individuals (i.e., those whose masculinity and femininity scores were both low) were not classified as androgynous. Because there were too few "undifferentiated" and "sex-reversed" (i.e., "masculine" sex-typed females and "feminine" sex-typed males) individuals in the pretest population to justify attempting to create additional dyad types to represent them, individuals in these categories were not included in the present design.
jects into the experimental room and, turning on the lights, asked them to leave their belongings by the door and take a seat on the couch while she secured some fresh copies of the questionnaire. Explaining that she would return "in a minute or two," the experimenter left the room and closed the door behind her. She then activated a stopwatch to time the 5-minute interval in which the subjects were covertly audio- and videotaped.

At the end of this period, the experimenter reentered the room, announced that the study was half over, and queried the subjects for possible suspicion of the videotaping before proceeding further. Following this test for suspicion, she explained that the first part of the study had been designed to examine "the actual behavior of two strangers during their initial interaction." She showed the subjects how the videotape of their interaction had been made, assured them that any data taken from the tape would be used for statistical purposes only, and asked them to sign a release form giving their consent for the tape to be used in this way (all subjects agreed to sign the release). She also indicated that the tapes would be erased as soon as the relevant data had been coded from them.

The experimenter then explained that the second part of the study involved assessment of the subjects' perceptions of the interaction in which they had just engaged. Accordingly, each subject was asked to fill out a copy of a brief posttest questionnaire designed to elicit perceptions of one's own and the other's behavior during the interaction period. Before they completed the questionnaires, the subjects were seated in opposite corners of the room, facing away from each other, and were explicitly assured that their responses would not be seen by the other subject. The experimenter waited outside in the hall while the subjects completed the questionnaires and collected the forms from the subjects as they left the room. Each subject was sworn to secrecy and then released.

Dependent Measures

As in the study by Ickes and Barnes (1977), several different categories of dependent measures were obtained from the data generated by this study.3 The first set of measures was coded from the videotape data by two independent judges who were blind to the subjects' scores on the pretest personality measures. Included in this set were primary measures of some relatively constant or "static" behaviors and some relatively variable or "dynamic" behaviors. Behaviors defined as static included who sat first, who talked first, interpersonal distance (shoulder-to-shoulder), and the degree of body orientation each subject maintained with respect to the other. Interrater reliability coefficients for these four measures were .94, .90, .93, and .66, respectively, based on the entire sample. Behaviors defined as dynamic were recorded from the videotapes by means of an Esterline-Angus heat-sensitive event recorder; these included the total frequency and duration of verbalisations, directed gases, expressive gestures, and facial expressions of positive and negative affect. Interrater reliabilities for the total frequency and duration of these behaviors across the 5-minute interaction period were all greater than .92, based on a sample of 10 subjects.

A second set of dependent measures coded directly from the videotapes was based on the classification of each subject's verbalizations into various verbal structure categories. The categories used were the broad subdivisions of a hierarchical classification scheme developed by the authors (Ickes & Barnes, Note 2) and included four major types of verbalizations: questions, comments, responses, and verbal reinforcers. Any question that one person asked the other was coded in the first of these categories. Any verbalization that was not a direct response to a previous question or comment by the other person was coded in the second category, while any verbalization that was a direct response to the other's question or comment was coded in the third. The fourth category included any verbalization that served as a verbal reinforcer by indicating attention to, understanding of, or agreement with the other person's preceding verbalization ("yeah," "uh-huh," "right," "I see," etc.). Although the criteria for assignment of verbalizations to the various verbal structure categories were based largely on content and therefore somewhat subjective, the categories were intuitively discriminable ones for which ostensive definitions could easily be provided (Duncan & Fiske, 1977, pp. 15-16). The rates of agreement of two blind, independent raters in assigning subjects' verbalizations to each of these four categories were all greater than 90%, based on a sample of 10 subjects.

A third set of dependent measures was derived from the Esterline-Angus charts of the verbalization and directed-gaze data. Data derived from these charts included measures of the number of periods of silence and the number of times each subject initiated and/or terminated a conversation sequence or a mutual gaze. The interrater reliability for the number of periods of silence was .82 (n = 30). Interrater reliabilities for the conversation sequence data were .94 for initiations and .81 for terminations (n = 30). Interrater reliabilities for the mutual gaze data were .73 for initiations and .87 for terminations (n = 30).

The fourth set of dependent measures was based

3 A more detailed elaboration of the nature of these measures and the procedures used to score them is provided by Ickes and Barnes (1977). Exceptions, apart from those described below, were the measures of facial expressions of positive and negative affect, which were not included in the earlier study. Facial expressions of positive affect were operationally defined as any instances of smiles and/or laughter. Expressions of negative affect were operationally defined as frowns and their variants (scowls, grimaces, etc.).
on the subjects' responses to three sets of items on the posttest questionnaire. The first set of items was nearly identical to the first set of questionnaire items used in the Ickes and Barnes (1977) study. These items focused on a range of feelings and behaviors occurring during the 5-minute interaction for which subjects were required to rate both themselves and their partner (cf. Ickes & Barnes, 1977, p. 324). The second set of items constituted a measure of situational versus dispositional attribution for behavior in a social interaction setting. These items were first used in Storms's (1973) experiment and were scored in the manner described therein.

The final set of items constituted a measure of interpersonal attraction or liking. These were 18 bipolar adjective dimensions (exciting-dull, sincere-in sincere, cold-warm, etc.) on which the subjects within each dyad were asked to rate each other. The individual ratings on these 18 dimensions were later summed in order to compute a global index of liking for the other.4

Results and Discussion

In order to test the hypothesis that greater interpersonal incompatibility and stress would occur in the type of mixed-sex dyad in which both members were stereotypically sex typed than in dyad types in which one or both members were androgynous, a series of weighted contrasts (Myers, 1972, p. 354) were applied to the data for the various dependent measures described above. In addition, the biological sex of the two subjects within each dyad was treated as a within-dyads variable in order to determine whether effects occurring at the level of the dyad were differentially attributable to one or the other of its members.

Static Behaviors, Dynamic Behaviors, and Attraction Ratings

The analysis of the static behavior data revealed no significant differences for any of the relevant measures. In other words, who sat first, who talked first, the amount of interpersonal distance, and the degree of body orientation toward the other did not appear to vary according to the sex role composition of the dyad or the biological gender of the dyad members. The analysis of the dynamic behavior data, however, revealed a strikingly convergent pattern of results supportive of our hypothesis. These data are summarized in Table 1, which includes the means for the four dyad types and the F value for the weighted contrast comparing the first dyad type against the other three.

The data in Table 1 clearly show that the amount and quality of interaction in the male ST–female ST dyads diverged sharply from the amount and quality of interaction in the other dyad types. The subjects in these dyads not only talked, looked, and gestured to each other less frequently and for shorter periods than in the other dyad types; they also expressed less positive affect (smiling and laughing) during the interaction period.5 The data for the attraction measure complemented these findings, revealing significantly less interpersonal attraction in the male ST–female ST dyads than in the remaining dyad types. Since none of these differences was further qualified by an interaction with the biological sex (male vs. female) of the subjects within dyads, the results may be interpreted as evidence that the apparent interpersonal incompatibility and stress occurring between males and females with stereotyped sex roles was reflected in the behavior of both individuals to roughly the same degree.

The consistency of the between-dyads differences reported in Table 1 may not be particularly surprising in view of the substantial positive intercorrelations among these vari-

4 Of these three sets of posttest questionnaire items, only the liking ratings will be reported here. The first two sets of items yielded a number of statistically significant results, but since these findings are quite diverse, occasionally complex, and generally unrelated to the hypothesis under consideration, an attempt to review them adequately here would take us far from our present concerns. We should note, however, that none of these questionnaire data would call into question any of the findings to be reported below.

5 These effects held even when a difference score (pos–neg affect) measure was used to examine the degree of positive affect expressed relative to the degree of negative affect expressed (see Table 1, bottom lines). The measures of positive affect also revealed significant main effects for the sex of the subjects within dyads. Specifically, females smiled and laughed more frequently ($M = 9.1$) and for longer durations (27.6 sec) than did males ($M = 6.0$ and 14.9 sec, respectively); $F(1, 36) > 9.0, ps < .01$. The same effects were apparent for the difference score (pos–neg affect) measures, $F(1, 36) > 7.5, ps < .01$.
Table 1
Differences in Liking and Behavior Between the Male ST–Female ST Dyad Type and the Other Dyad Types over a 5-Minute Interaction Period

<table>
<thead>
<tr>
<th>Dependent measure</th>
<th>Male ST–Female ST</th>
<th>Male ST–Female A</th>
<th>Male A–Female ST</th>
<th>Male A–Female A</th>
<th>F(1, 36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liking</td>
<td>19.2</td>
<td>43.0</td>
<td>42.6</td>
<td>40.8</td>
<td>15.98***</td>
</tr>
<tr>
<td>Verbalizations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total frequency</td>
<td>21.0</td>
<td>29.7</td>
<td>34.6</td>
<td>28.3</td>
<td>3.03†</td>
</tr>
<tr>
<td>Total duration (sec)</td>
<td>46.7</td>
<td>90.2</td>
<td>87.3</td>
<td>67.0</td>
<td>4.80*</td>
</tr>
<tr>
<td>Directed gazes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total frequency</td>
<td>12.9</td>
<td>19.7</td>
<td>21.7</td>
<td>20.8</td>
<td>2.99†</td>
</tr>
<tr>
<td>Total duration</td>
<td>34.9</td>
<td>75.2</td>
<td>74.7</td>
<td>61.1</td>
<td>4.69*</td>
</tr>
<tr>
<td>Expressive gestures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total frequency</td>
<td>1.6</td>
<td>7.2</td>
<td>4.7</td>
<td>4.0</td>
<td>4.41*</td>
</tr>
<tr>
<td>Total duration</td>
<td>1.3</td>
<td>11.4</td>
<td>6.1</td>
<td>4.0</td>
<td>3.58†</td>
</tr>
<tr>
<td>Positive affect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total frequency</td>
<td>4.0</td>
<td>8.2</td>
<td>9.8</td>
<td>8.4</td>
<td>6.59**</td>
</tr>
<tr>
<td>Total duration</td>
<td>11.4</td>
<td>21.5</td>
<td>29.1</td>
<td>23.0</td>
<td>4.10*</td>
</tr>
<tr>
<td>Negative affect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total frequency</td>
<td>1.2</td>
<td>.7</td>
<td>.9</td>
<td>1.1</td>
<td><1</td>
</tr>
<tr>
<td>Total duration</td>
<td>1.9</td>
<td>.6</td>
<td>1.9</td>
<td>1.2</td>
<td><1</td>
</tr>
<tr>
<td>Pos–neg affect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total frequency</td>
<td>2.8</td>
<td>7.5</td>
<td>8.9</td>
<td>7.3</td>
<td>7.26***</td>
</tr>
<tr>
<td>Total duration</td>
<td>9.5</td>
<td>20.9</td>
<td>27.2</td>
<td>21.8</td>
<td>4.41*</td>
</tr>
</tbody>
</table>

Note. When dyads, rather than subjects, are the units of analysis, the reported means are based on the averaged scores of each pair of subjects, not on their combined scores. ST = stereotypically sex typed; A = androgynous.

†p < .10.
*p ≤ .05.
**p < .02.
***p < .001.
counters. In the absence of such implicit consensus, a greater mutual accommodation of behavior may typically be required of participants in mixed-sex interactions, and this should be especially true of dyadic relationships. Moreover, because the universally observed norms of reciprocity operating within dyadic encounters tend to equalize and normalize the frequency and duration of various behaviors (especially verbalizations, directed gazes, and gestures, which all play an integral role in the reciprocal exchange of speaking turns, e.g., Duncan & Fiske, 1977, chapter 11; Jaffe & Feldstein, 1970), it may be reasonable to expect that only those behaviors most directly reflective of the instrumental-expressive distinction would differentiate the two sexes in mixed-sex dyadic encounters.

Although a number of measures would appear to be valuable in capturing this instrumental-expressive distinction (cf. Aries, 1976; Henley, 1977; Pilavin & Martin, in press; Strodtebeck & Mann, 1956; Siegman, Note 1), measures of positive affect (smiling and laughing) have yielded consistent sex differences in other studies of relatively unstructured mixed-sex interaction (Duncan & Fiske, 1977, chapter 4; Pilkonis, 1977) and were the only behavioral measures to yield significant sex differences in the present study. Furthermore, Henley (1977, p. 138, pp. 173-178) has suggested that facial expressions of positive affect represent a category of behavior for which sex differences may actually be enhanced, rather than attenuated, in comparisons of mixed-sex versus same-sex encounters. It may therefore be useful to examine the male and female means for these measures within the various dyad types, since these measures appear to be the ones in our study that are most clearly indicative of differences in the subjects' sex role orientations yet are least likely to be implicated in such mechanical aspects of the interaction as the exchange of speaking turns.

Table 2 represents the mean frequencies and duration of positive affect for the males and females within the various dyad types. The means for the males and females within the male ST-female ST dyads, though significantly different, were both quite low, as we have already indicated, presumably because of the social incompatibility and stress unique to this dyad type. Despite the lack of overall Sex x Dyad Type interactions for the data presented in Table 2, comparisons among the male and female means of the four dyad types are worthy of some attention, since they indicate that sex differences that were present within the male ST-female ST, male ST-female A, and male A-female ST dyads were completely absent when both members of the dyad were androgynous. Moreover, a comparison of the ordering of the means within the last three dyad types indicates that sex-typed males (in the male ST-female A dyads) exhibited the least positive affect, whereas sex-typed females (in the male A-female ST dyads) exhibited the most, with the androgynous males and females falling in between. In

<table>
<thead>
<tr>
<th>Dyad type</th>
<th>Dependent measure</th>
<th>Male ST-Female ST</th>
<th>Male ST-Female A</th>
<th>Male A-Female ST</th>
<th>Male A-Female A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M/F</td>
<td>M/F</td>
<td>M/F</td>
<td>M/F</td>
<td>M/F</td>
</tr>
<tr>
<td>Positive affect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.3/5.6a</td>
<td>5.9/10.4a</td>
<td>7.6/12.1b</td>
<td>8.4/8.4c</td>
</tr>
<tr>
<td>Total duration</td>
<td></td>
<td>3.2/19.6a</td>
<td>14.4/28.5a</td>
<td>17.8/40.4a</td>
<td>24.2/21.8e</td>
</tr>
</tbody>
</table>

a Indicates that the difference between the mean for the males and the mean for the females is significant (*p* < .05) for a given comparison by two-tailed *t* test for nonindependent means.

b *p* < .12, two-tailed.

c *t*(9) < 1, *ns.*
other words, the data appear to suggest that—barring the kind of social incompatibility that inhibits the expression of positive affect in both dyad members—the level of expressed affect varies according to their respective sex role identifications. Furthermore, the ordering of the means appears to be consistent with Bern’s (1974, in press) analyses in suggesting that sex differences in behavior may be minimized when both dyad members are androgynous.

Other Measures

The remaining categories of dependent measures add little to the results presented in Table 1. The various “derived” measures (number of periods of silence, frequency of initiation and/or termination of a conversation sequence or a mutual gaze) all yielded nonsignificant results. The verbal structure measures were also largely nonsignificant but generally revealed weak trends in the direction of the result obtained for the frequency-of-verbalizations data. The only clearly significant effect in these data was for the measure of the number of verbal reinforcers used during conversation, and the patterns of means for this measure were somewhat anomalous with respect to those for the other verbal structure categories and for the behavioral and affective measures we have reviewed above. Although the weighted contrast revealed that significantly fewer verbal reinforcers ($M = 1.4$) were used in the male ST-female ST dyad type than in the other three dyad types taken together, $F(1, 36) = 5.19$, $p < .05$, additional a posteriori comparisons indicated that the mean number of verbal reinforcers used in the male A–female A dyad type was comparably small ($M = 1.6$) and also differed significantly from the means of the male ST–female A ($M = 4.0$) and the male A–female ST ($M = 4.4$) dyad types.

Since the male ST–female ST dyads differed from the male A–female A dyads across a wide range of verbal and nonverbal measures, we might speculate that the low frequency of verbal reinforcers again reflects interpersonal stress in the dyads whose members were both stereotypically sex typed but has a much different meaning in the dyads whose members were both androgynous. Perhaps it can be taken as evidence that two androgynous individuals do not need to provide each other with much verbal reinforcement in order to establish rapport and interact compatibly during an initial encounter. Why this may be so, however, has yet to be determined.

Alternative Explanations of the Major Findings

The results from a number of measures provided converging evidence of a low level of interpersonal attraction in the initial interaction of mixed-sex dyads comprised of a masculine sex-typed male and a feminine sex-typed female. The explanation we have proposed for this pattern of results has focused on the interpersonal incompatibility and stress that presumably result from the enactment of highly stereotyped and socially opposed sex roles by the members of these dyads. We will now consider some possible alternative explanations for the observed effects.

Stereotyped sex roles and social distance. One alternative explanation is that traditional sex roles prescribe that male and female strangers maintain social distance in unstructured situations by simply minding their own business. Since the various behaviors we examined were intercorrelated, such an explanation could conceivably account for the general pattern of low interactional involvement in the male ST–female ST dyads. It is questionable, however, whether such an explanation could also adequately account for the pattern of means presented in Table 2 or explain why the presence of at least one androgynous individual within the dyad should lead to circumvention of the hypothesized social distance norm. More importantly, the data for the number of conversation sequences initiated offer no support for this alternative explanation, since the mean number of conversation sequences initiated by each member of the male ST–female ST dyads ($M = 1.70$) was not significantly different from the means in the three remaining dyad types; $Ms = 1.65, 1.20, and 1.95$, respectively; contrast $F(1, 36) < 1$, ns. The data suggest that the impaired
interaction evidenced in the male ST–female ST dyads was not simply due to the individuals' failure to initiate conversations but rather to their failure to sustain them successfully.

Physical attractiveness. A second alternative explanation for the present data is suggested by a number of studies reviewed by Perloff and Lamb (Note 3), which indicate that children who are physically unattractive or concerned about their appearance may be especially likely to adopt stereotyped sex roles in order to "compensate for their lack of attractiveness" (e.g., Lavoie & Andres, 1976) or "to reinforce their masculinity or femininity" (e.g., Frazier & Lisonbee, 1971; Schoenfeld, 1969; Stolz & Stolz, 1944). If such findings may be generalized to the present college-age sample, they suggest the possibility that the members of the male ST–female ST dyads may have been more physically unattractive than the members of the other dyad types and that perceived attractiveness—rather than the enactment of stereotyped sex role behaviors—may have mediated the obtained results.

To determine whether the members of the male ST–female ST dyads would be rated as "objectively" less attractive than the members of the other dyad types before the interactions took place, two groups of naive raters were asked to view the first few seconds of each videotape before any conversation occurred and rate the physical attractiveness of each of the dyad members. Each group of raters was composed of two males and two females who had not participated in the study and were kept blind to the sex role identifications of the subjects being rated. Because the mean attractiveness ratings of the four raters in the first group were found to correlate .75 with mean ratings of the four raters in the second group, the mean ratings were judged to be sufficiently reliable that the average of each pair of means could be taken as the best estimate of each subject's actual attractiveness.

An analysis of these data revealed no significant differences in attractiveness among the various dyad types, although the female subjects were generally rated as more attractive ($M = .57$ on a -2 to $+2$ scale) than the males ($M = .18$); $F(1, 36) = 6.88, p < .02$. In fact, the data indicated that both the males and the females in the male ST–female ST dyads were rated as being slightly more attractive than the males and females in the other dyad types, suggesting that differences in physical attractiveness do not provide an adequate explanation for the low level of interaction and liking observed in these dyads.

Self-monitoring. A third alternative explanation for the results is that they were mediated by differences in self-monitoring rather than by differences in sex role orientation per se. The need to investigate this possibility stemmed from the fact that there was a -0.20 correlation between SM and the androgyny difference scores on the BSRI for the entire pretest population ($df = 505, p < .001$) and a -0.25 correlation for the sample of subjects included in the present design ($df = 78, p < .025$). Although these correlations were quite modest, suggesting that only 4–6% of the variance in the two measures is shared in common, they raised an interesting question regarding the nature of the relationship between sex role identification and SM.

The direction of the relationship indicated that masculine sex-typed subjects were generally higher in self-monitoring than feminine sex-typed subjects, with androgynous subjects falling in between. Conceptually, this relationship makes sense. Since the masculine sex role prescribes the active control over (and, frequently, the suppression of) one's expressive behavior, the capacity for self-monitoring and expressive control should be greater for masculine than for feminine sex-typed individuals. For masculine-identified individuals, this capacity is likely to be a prerequisite for successfully enacting the masculine role, especially to the degree that the role requires the masking or suppression of one's true feelings (Sattel, 1976). For feminine-identified individuals, however, the need to develop the capacity for self-monitoring and expressive control should be much less pressing. Because the feminine sex role permits or even encourages the active expression of one's feelings (at least the more positive ones), individuals who adopt this sex role orientation should generally have less need to develop the kinds of
control mechanisms needed to check or alter their expressive behavior (see Siegman, Note 1, for some interesting data consistent with this reasoning). Thus, although some feminine sex-typed individuals may develop a high level of self-monitoring and use it to enhance the enactment of "appropriate" sex role behaviors (Ickes & Barnes, 1977, pp. 322 & 328), the capacity for self-monitoring is probably not as essential for the successful enactment of the feminine role as it is for the masculine one.

If this reasoning is correct, it suggests the possibility that the present results may have a broader generalizability than we have indicated so far. For if the shared variance in self-monitoring and sex role orientation is primarily responsible for the obtained effects, the decreased interaction and liking we have observed may not be limited only to mixed-sex dyads comprised of a masculine male and a feminine female but may occur in all dyads in which a person whose expressive behavior is highly monitored and controlled attempts to interact with someone whose expressive behavior is relatively uncontrolled and spontaneous. In other words, the sex-typing variable may be important only insofar as it helps to define the degree to which individuals are likely to differ on the dimension of expressive control versus expressive spontaneity. Presumably, classifying the dyads on the basis of SM or of some other variable(s) that defines this difference should yield essentially similar results.

Unfortunately, this issue can be resolved only tentatively here. Although analyses of covariance would provide the best and most elegant means of separating the independent effects of sex role orientation and SM, the nature of the design (in particular, the treatment of dyads, rather than subjects, as the major units of analysis and the resultant necessity of using a difference-score measure as the covariate) made it difficult to justify their use in the present case. Space does not permit a detailed discussion of the alternative analyses that were conducted to explore this issue, but the results of these analyses—though obviously less than definitive—suggest that differences in expressive control may contribute to some degree to a low level of liking and reduced interaction in unstructured dyadic encounters. This conclusion is bolstered somewhat by findings from our previous study of same-sex dyads, in which consistent evidence of "interactional strain" was also observed in dyads in which there were large differences in expressive control (Ickes & Barnes, 1977, pp. 323–328). It should be noted, however, that differences in expressive control appeared to account only partially for the results of the sex role analysis of the present study and that variance uniquely attributable to each of the sex role orientation and SM measures also contributed to the obtained results. In any event, the implication that expressive control differences may be "built into" differences in the stereotyped masculine and feminine sex roles does not render the results any less interesting, but rather offers some additional insight into their meaning.

Summary and Implications

The data from this study revealed pronounced differences in the nature of the interactions experienced in mixed-sex dyads according to the sex role identifications of their members. In particular, there was considerable evidence across a range of verbal and nonverbal behaviors of greater interpersonal incompatibility and stress in dyads comprised of a masculine sex-typed male and a feminine female than in dyads in which one or both members were androgynous. The explanation proposed to account for this pattern of results is based on the assumptions that (a) subjects depended on their internalized sex roles to guide their behavior in this relatively unstructured, initial interaction situation, and (b) the behaviors prescribed by the stereotyped "masculine" sex role were socially incompatible with those prescribed by the stereotyped "feminine" sex role, so that interpersonal stress resulted as a consequence of their enactment.

As alternative explanations for the obtained results, we have considered and—on the basis of relevant data—rejected the possibilities that the members of the stereotypically sex-typed dyads were more "socially distant" or less physically attractive than the
members of the other dyad types. The possibility remains that differences in expressive control may have been partially responsible for the findings we have reported, and this possibility should be addressed explicitly in future research. Subsequent research in this area might also profit by addressing the question of whether the sex role identification of males and females is systematically related to their preference to affiliate with sex-typed versus androgynous members of the opposite sex.

On the Intuitiveness, Generalizability, and Implications of the Results

At first glance, the present set of findings may have struck the reader as somewhat counterintuitive. Many of us (the authors included) have probably harbored the deep-rooted belief that society prescribes and endorses stereotyped sex role behaviors because of their time-tested utility in promoting the effective socialization and social integration of its members. In other words, we are likely to believe that males ought to adopt a masculine sex role and females ought to adopt a feminine one because our implicit assumption is that everyone will get along together much better that way. The present data suggest, however, that this assumption may at least be questionable, if not completely wrong—that, in fact, some degree of social incompatibility between males and females may be the result of their adherance to these socially endorsed sex roles, not their lack of adherence to them. From this standpoint, the present data may indeed appear to be counterintuitive and may give us cause to wonder if the stereotyped masculine and feminine sex roles are really as socially dysfunctional as the present data suggest.

To put this matter into perspective, we suggest that the enactment of stereotyped sex role behavior can potentially be quite dysfunctional but that the degree to which it is actually dysfunctional is probably highly constrained by situational influences. In the special conditions established in the present study, where there was no past history of interaction and where external cues to guide the behavior were lacking, subjects were essentially forced to depend on internalized dispositions to guide their behavior, and the social incompatibility of masculine sex-typed males and feminine sex-typed females was fairly evident. In a more structured interaction setting, however, or given a longer history of interaction, we would expect (a) that the situational cues guiding behavior would tend to predominate over the dispositional ones; (b) that subjects would be likely to select and enact other, more socially compatible roles from their repertoires; and (c) that the amount and quality of their interaction would markedly improve.

It is not clear to what degree and with what frequency the optimal conditions for the occurrence of this phenomenon may be replicated in natural real-world settings. We suspect, however, that there are a fairly large number of day-to-day encounters between strangers in which these conditions are met. It is also possible that even in more structured interactions, individuals may at times “tune out” relevant situational inputs and lapse into the enactment of overlearned and highly “scripted” roles (Abelson, 1976; Langer, in press). Thus, although the effects reported here are certainly not presumed to be ubiquitous, they may still occur in enough situations and with sufficient frequency to create real problems in the interactions of males and females—even in the context of long-term close relationships.6

The present results may have some important theoretical implications for both Bem’s (1974, in press) conception of sex role identification and Snyder’s (1974, in press) conception of self-monitoring. The data are certainly consistent with the research and theorizing by Bem and her colleagues, which suggest that it is the relative inflexibility and rigidity of stereotypically sex-typed individuals that

6 Some writers have in fact argued that the hypothesized social incompatibility of stereotypically sex-typed males and females is much more pervasive and far reaching in its implications than our rather cautious analysis would suggest. For interesting discussions of how traditional sex roles may give rise to complex and multilevel “sexual politics,” see Henley (1973-1974, 1977), Lockheed and Hall (1976), Safilios-Rothschild (1977), and Sattel (1976).
leads them to behave in a dysfunctional way in certain situations. The data further suggest, however, that the degree of behavioral dysfunction may actually be compounded in certain social encounters involving two individuals whose stereotyped sex roles are socially incompatible (Saffilos-Rothschild, 1977). Similarly, while the present findings are not inconsistent with Snyder's (1974, in press) assertion that a high level of self-monitoring is associated with a concern about enacting appropriate role-prescribed behavior, they go beyond this assertion in suggesting that the development of self-monitoring may actually be a prerequisite for the successful enactment of certain socially defined roles (Sattel, 1976).

Reference Notes

References

Langer, E. J. Rethinking the role of thought in social

Received August 25, 1977