MEMS

- Micro-scale devices fabricated using techniques originally developed for IC fabrication:
 - Repeatable processes
 - Precise features
- System integration:
 - Components and associated electronics (signal processing, feedback control, etc.) on the same chip

Major Markets
- Automotive
- Information Technology
- Telecommunications
- Biomedical
- Environmental/Industrial
- Aerospace

MEMS Applications (1)
- Sensors
 - Gyroscope
 - Accelerometer
- Actuators
 - Comb drive
 - Motor

MEMS Applications (2)
- Optical/RF Components
 - Optical Switch
 - Inductor
- Mechanical Components
 - Hinge
 - Gears

Design Challenges
- No standard processes
- No set of primitive elements for simulation
- Scaling effects of miniaturization:
 - Thermal/mass transport properties
 - Thin-film material properties
 - Increased surface-area-to-volume ratio
 - Small inertial mass -> higher resonance (faster response)
 - Surface forces (capillary, friction, stiction, etc.)
- Integrated electronics
- Testing & packaging
- Interdisciplinary:
 - Mechanical: structural, thermal, fluids, etc.
 - Electrical
 - Optical/RF
 - Biology, chemistry, physics
Multidisciplinary Design Team

- MEMS component designers
 - Optimizing component performance
- MEMS circuit designers
 - Designing better signal-processing or feedback control circuits for MEMS devices
- MEMS system designers
 - Integrating MEMS components and electronics into their applications
- MEMS foundries
 - Optimizing the process parameters for MEMS applications and bridging the gap between designers and foundries

Component Design Tasks

- Layout editing
- 3D solid model generation
- FE meshing optimized for MEMS structures
- Detailed FE/BE analysis
- Interfaces with optical and RF solvers
- Process simulation and design

System-Level Design Tasks

- Behavioral simulation
- Optimization
- Design of electronics, MEMS devices and packaging
- Tradeoffs and “what if” analysis
- Integrated design database
- Libraries of characterized devices
- Interfaces with standard EDA, RF, optical design tools

Design Goals

- High yield
 - Statistical tools; design centering
- Low cost
 - Cost analysis tools
- Fast time-to-market
 - Re-usable libraries
- Optimization
- Best technology
 - Integrated design tools
- Collaborative and multiphysics design
 - Design -> fabrication -> packaging -> analysis -> testing

MEMSCAP CAD Tools Overview

- MEMS Xplorer
 - Unix-based component design tool
- MEMS Pro
 - PC-based complete design package

MEMS Pro V3 Overview

- Stand-alone PC-based design package
- Fully customizable
- Complete design flow
 - System-level design tools
 - Component-level design tools
 - FE and EM tools
- Component library includes standard MEMS components:
 - Layouts
 - Schematics
 - Macro (behavioral) models
- Foundry setups
MEMS Pro Design Flow

MEMSCAP CAD Presentation

- Presentations
 - System-level design tools
 - Component-level design tools
 - Layout
 - 3D modeling
 - DRC
 - MEMS Pro ANSYS Add-Ons
 - ANSYS MEMS features

- Hands-on tutorial
 - Creating schematics
 - System-level simulations
 - Optimization
 - Layout editing with 3D model generation
 - Design Rule Checking