Policy Promotes Safety of Minors on Campus

UT Arlington is committed to introducing minors to interesting and challenging scientific, scholarly, or artistic pursuits at a young age. These experiences must be handled in ways that will promote the safety of minors and not compromise their welfare, while at the same time do not impair the normal functions of the University.

Minors in Laboratories or Similar Facilities (Policy 5-308) applies to covered minors who are at least 10 years old, but younger than 18 years of age, and who are not emancipated, matriculated as UT Arlington students, or employed by UT Arlington. The policy establishes restrictions relating to and conditions under which certain minors are permitted to be in UT Arlington laboratories and other facilities that could pose risks to minors, and also provides a process for obtaining exceptions to provisions in the policy.

Laboratories and similar facilities at UT Arlington can include: research, teaching, and environmental laboratories, animal and plant facilities, and other facilities such as ceramics and art studios that can also pose risks. During their visit covered minors can participate in these areas through a tour(s) by observing pre-selected and pre-arranged research, scholarly or artistic activities. In certain areas the minor(s) can observe, actively participate, or learn skills while taking part in training exercises associated with research, scholarly or artistic activities (termed “covered activities”).

Covered minors are not permitted under any circumstances in these laboratories:
- Labs where radiation or radioactive materials are stored or used;
- Labs with Class IIIB or IV Lasers;
- Labs classified at a level of containment of Biosafety Level 3 (BSL-3) or above, and/or
- Animal Care Facilities

See Minors in Labs on page 2

Tips to Prevent Kitchen Fires

Don’t let your next dinner party go up in smoke! Cooking fires are the most common cause of household fires, and you don’t have to own a commercial-sized Viking range to feel the heat.

From grease spills to stray dishtowels, even a tiny cooktop in a studio apartment can set a blaze. Follow these eight tips to reduce your risk of a kitchen fire.

1. Stay in the kitchen. This may seem obvious, but, according to the National Fire Protection Association, unattended cooking is the number one cause of cooking fires. If you must leave a stove unattended, turn off the heat and move the pan to a cool burner.

2. Use a timer. Check food regularly, whether you’re simmering, boiling, baking or roasting. Using a timer can help remind you to check on your dish.

3. Keep the stove top clear. Keep dishtowels, oven mitts, paper towels—anything that can catch fire—away from your stovetop.

4. Dress for the occasion. Wear close-fitting clothes, and tightly roll up sleeves when you’re cooking. Loose clothing can come in contact with burners and catch fire.

5. Wipe up spills. Cooking on a dirty stove, or in a dirty oven, is just inviting a potential fire. Grease buildup is flammable; clean your stove every time you cook and promptly wipe up any spills.

6. Don’t overheat your oils. Overheated cooking oil can start to smoke and bubble up, which can cause it to spill out and ignite.

7. Wait for grease to cool before disposing. Toss hot grease into your trashcan and it could go up in flames! Wait for it to cool before disposing of it in the garbage. Or, better yet, pour it into an old food can before tossing it out.

See Cooking Safety on page 4
Meet Our New Fire Safety Employees

David Doerr (Dave) recently retired from the air force fire and emergency services. During his 24 years he was stationed in Afghanistan and Germany, serving in various fire positions which included fire chief, assistant and deputy fire chief, leading firefighters in providing emergency response operations. Dave recently completed his B.A. in Emergency and Disaster Management and also holds an associate’s degree in fire science.

He has experience managing administrative staff and firefighters, as well as budgets, vehicles, equipment and facilities. He has received many medals of commendation and the meritorious service award.

In his position as Fire Construction Project Coordinator, Dave will coordinate all aspects of fire and life safety installations to support new construction and renovation projects on campus.

Dave and his wife Kathy live in Fort Worth. They have one son and are expecting their first grandchild in August. In his spare time he likes to golf, fish and work on cars.

EH&S Staff Recognized at Ceremony

Four other members of the EH&S department were honored for longevity at this year’s employee recognition ceremony.

Tracy Gardner, a 25 year UT Arlington employee, is a workers’ compensation claims analyst and has worked in a variety of positions over the years. She began doing accounts payable full time at the University Center. Four years later, she handled records as a human resources tech. In 1996, she moved to part time and started working in the only job-share position on campus. She transferred to her current position with EH&S in 2001. “UT Arlington is a great place to work,” she says. “I really enjoy what I do.”

Joel Box was recognized for 20 years of service to the university. He started his career as a plumber in Physical Plant (now Facilities Management) and took a position as fire safety specialist with EH&S in 2002. Joel also obtained an associate degree in aircraft maintenance technology prior to being hired at UTA.

Debbie Kirkley received a pin for 15 years of service. She joined EH&S as a receptionist and throughout those years has progressed to administrative assistant to the director. Debbie has a bachelor of arts in journalism.

Associate Director **Robert Smith** has achieved 10 years of service, all with EH&S in the fire and life safety area. He came to UT Arlington from private industry, with a background as an electrician and also has a certification in fire alarm systems from NICET (National Institute for Certification in Engineering Technologies).

Eric Woods primary duty as Housing Fire Safety Specialist will be performing fire inspections of university housing units, including residence halls and apartments.

He comes to us after a long career in fire service with the U.S. Air Force, where he served as a firefighter, driver/operator, and captain at the Naval Air Station in Fort Worth from 1992 to 2014. Eric is knowledgeable in the maintenance, inspection and testing of fire extinguishers, fire alarms, and fire extinguishing systems. He holds many certifications in hazardous materials handling and as a fire inspector. He also has an Associate of Applied Science in Occupational Safety and Health from Texas State Technical College in Waco.

Eric is a veteran of Desert Storm. He was part of the first group of responders to arrive and aid New Orleans after Hurricane Katrina, and helped recover pieces of the space shuttle for NASA after it crashed over Texas in 2003. Eric lives in Weatherford; he has three boys, two girls, one grandson, and will soon be welcoming two more grandchildren—twins.

Minors in Labs

(continued from page 1)

Unless an exception is granted, covered minors are not permitted in the following laboratories:

- Labs classified as Biosafety Level 2 (BSL-2);
- Any facility or location where the use of a hard hat or respirator is required during normal operations.

EH&S has prepared some helpful flow charts to facilitate the overall process of decision making, applying exceptions to the policy, and requirements/conditions that must be met before minor(s) are allowed in tour(s) or covered activity(ies) at UT Arlington. Please refer to the following:

- Decision Tree – Laboratory Tours for Minors
- Decision Tree – Covered Activities for Minors
- Decision Tree – Exceptions to the Policy

While participating in a tour(s) or covered activity(ies), assigned monitor(s) will supervise the covered minors and will ensure that they are always in compliance with all applicable requirements or conditions. See documents below for duties:

- Monitor Responsibilities during Laboratory Tours
- Monitor Responsibilities during Covered Activities

Other forms relating to this policy (numbers 8-90 through 8-94) can be found on the EH&S forms index.
Reducing Bio-Burden in Biological Laboratories

In biological laboratories, samples worked with can harbor microorganisms that could be pathogens. Work is also done with microorganisms that are known pathogens. In addition to the use of proper and appropriate aseptic techniques when handling samples/microorganisms, it is vitally important for the safety of all laboratory personnel that the facility and laboratory rooms are maintained clean, organized, and clutter free.

All personnel should be trained in processes that are set up to maintain a required level of cleanliness for each task being performed. This will prevent contamination of the specific sample/microorganisms/cell cultures that are worked with, and also prevent contamination of the room and personnel who are working with the material. To prevent contamination is also essential for the successful completion of any research work involving living microorganisms.

The greatest source for contamination is the people who work in the laboratories and the subjects of their research. It is critical that protocols to maintain a required level of cleanliness are established, personnel are trained, and processes/techniques that are established to achieve the cleanliness are documented and recorded.

Developing a Decontamination Plan

A decontamination plan should be a part of every biological laboratory’s safety plan. The decontamination plan should include all surfaces and equipment that can reasonably be expected to be contaminated by microorganisms. Responsibilities and frequency for cleaning and disinfecting equipment and surfaces need to be defined. Cleaned and disinfected items need to be recognizable and should be labeled with the date/time when decontamination was performed. Appropriate PPE needs to be available for personnel performing the task.

When evaluating and choosing a decontamination method, some factors that should be considered are:

- Will it be effective in killing the microorganisms used in the laboratory/contaminants entering the laboratory area?
- Will it reach all surfaces, cracks, and crevices?
- Will it be safe on equipment and surfaces, without causing any damage to them?
- Will it be able to be performed within time constraints?
- Will it be environmentally friendly?

Ways to Reduce Bio-Burden

The bio-burden is defined as the degree of microbial contamination or microbial load; or the number of microorganisms contaminating an object. There are different ways to reduce the level of bio-burden. Areas, surfaces, utensils, and equipment can be cleaned, sanitized, disinfected, or sterilized. The key difference between these four ways to achieve cleanliness is the level of bio-burden reduction. The lowest level of bio-burden reduction is achieved by cleaning, then sanitizing, followed by disinfection, and finally sterilization.

Cleaning, within the food industry, means the adequate treatment of food-contact surfaces by a process that is effective in destroying vegetative cells of microorganisms of public health significance and in substantially reducing numbers of other undesirable microorganisms. Hand sanitizing should be done in laboratory settings each and every time when entering or leaving the laboratory.

See Bio-Burden Reduction on page 4
Cooking Safety (cont. from page 1)

8. Keep your smoke detector working. A smoke detector is an important fire safety device because it is your first line of defense. Also, make a mental note to change the batteries twice a year, when you change your clocks for daylight savings time.

If a small fire does erupt on your stove top, you might try to smother it by sliding a lid over the pan; turn off the burner, and leave the pan covered until it has cooled. For an oven fire, turn off the heat and keep the door closed.

But, if in doubt, just get out! Too many people have been injured trying to fight fires themselves. Close the door behind you to help contain the fire, and call 911. Insurance might help replace your valuables, but it can’t replace you!

Bio-Burden Reduction in Laboratories (continued from page 3)

Disinfection removes most organisms present on surfaces that can cause infection or disease by killing most bacteria, many types of viruses, some fungi, but not prions. Typically disinfection is done with various chemicals and applied by hand. Environmental Protection Agency (EPA) registered products can be selected as disinfectants to achieve desired level of disinfection.

Disinfection or sterilization, however, cannot be achieved without pre-cleaning, since organic material diminishes the effect of disinfectants. Therefore, the first step is to remove visible soil from the surface/equipment. It is important to avoid organic material drying on surfaces by rinsing or soaking. When dealing with instruments, disconnecting or separating instrument parts may be necessary.

Sterilization is defined as the statistical destruction of all microorganisms and their spores. Sterilization requires a higher level of technology than disinfection.

To achieve sterilization, dry heat, steam, peracetic acid, or gases such as ethylene oxide, vaporized hydrogen peroxide, chlorine dioxide, or formaldehyde can be used. Steam sterilization using an autoclave achieves rapid heating and penetration. The exposure times are short (when autoclave is loaded correctly) and there are no toxicity effects to workers. The method is inexpensive but can damage some delicate instruments.

Any process that is used to achieve either disinfection or sterilization should be validated.

See complete in-depth article on the Biosafety website.

DSL Shout Out

How nice it was to see all the Department Safety Liaisons at the Spring DSL Meeting on March 31! A total of 30 DSL members received their Training Achievement Award. We learned a few things from Assistant Vice President of Facilities Management Bill Poole, who spoke to us about Power Outage Procedures, as well as Cindy Mohat and Peggy Morales from Emergency Management, who presented information on Earthquake Procedures.

The next DSL Meeting & Luncheon will be held at noon on June 10 in the Bluebonnet Ballroom. Remember to visit the DSL website for current information and available trainings.

Check out EH&S on Facebook to keep up with all our events & training:
UT Arlington Environmental Health & Safety Office

EH&S TRAINING COURSES

These courses can be accessed online at this website www.uta.edu/training:
- Lockout/Tagout
- Hearing Conservation Training
- Radiation Producing Machine Safety
- Confined Space Entry
- Hazard Communication Training
- BioSafety Level 2
- Bloodborne Pathogens Training
- Bloodborne Pathogen Training for Research
- Radiation Awareness Training
- Laser Safety Training

Defensive Driving Course (DDC) This course must be completed every 3 years to remain an authorized driver of UTA vehicles. Driving record checks (MVR) must be renewed annually.

15-Passenger Van Training: Take the online course first. A behind-the-wheel driving test is also required and will be conducted on the dates and times below. Class size is limited, so please call ext. 2-2185 to register ahead of time. Meet at the EH&S office, 500 Summit Ave. Drivers must have already passed the Defensive Driving Course and have a current approved driving record check to attend.

- May 13—2:00 pm
- June 10—2:00 pm
- July 8—2:00 pm
- May 26—10:00 am
- June 23—10:00 am
- July 21—10:00 am

Call us at ext. 2-2185 to schedule other required training available through our office, such as:
- Radioactive Materials
- Powered Industrial Truck
- Respirator
- Hot Work Safety

Fire Extinguisher Training will be provided to groups on request. Please call 2-2185 to schedule.