UTA PhD Diagnosis Exam (Spring 2013)

Linear Systems / Controls

Instructions:
- Verify that your exam contains 7 pages (including the cover sheet).
- Please be sure to use blank paper to write your answers. If more space is needed, please ask the instructor for extra paper. DO NOT WRITE ON THE BACK OF A SHEET!
- The point values listed on this exam serve only as a guideline. The Dept reserves the right to make modifications to the weighting of the problems.
- Calculator is okay.

I Choose to work on Problems _____ and _______ (Choose only 2 from the 3 problems).

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Points</th>
<th>Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Total Score (Choose 2 Problems)</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. Stability and Minimality

A CD reader system can be written in state-space form as

\[
\begin{bmatrix}
1 & 1 \\
6 & 0
\end{bmatrix} x + \begin{bmatrix}
1 \\
-3
\end{bmatrix} u, \quad y = \begin{bmatrix}
1 & 0
\end{bmatrix} x.
\]

a. Is the system Asymptotically stable?

b. Is the system bounded-input/bounded-output (BIBO) stable?

c. Find minimal realization (a, b, c, d)
2. **Full state controller and observer**

An LTI system with input $u(t)$ and output $y(t)$ is described by the following I/O differential equation:

$$\frac{d^2 y}{dt^2} + 2 \frac{dy}{dt} + 2y = \frac{du}{dt} + 3u.$$

a. Design a full state feedback control law to place the poles of the system at location $p_{1,2} = -2$.

b. Design a full state observer with closed loop poles at location $p_{1,2} = -20$.

c. Draw a block diagram for a combined full-state controller and estimator for this system.
3. **Realization and Canonical Forms**

A transfer function is given as

\[H(s) = \frac{s + 3}{s^3 + 7s^2 + 14s + 8} \]

Reachable canonical form

a. Write SV equations for reachable canonical form

b. Draw RCF block diagram

Observable canonical form

c. Write SV equations for observable canonical form
d. Draw OCF block diagram

Parallel Canonical Form (Jordan Form)

e. Write SV equations for Parallel canonical form

f. Draw Parallel Form block diagram