Interval Training

More work can be performed at higher exercise intensities with same or less fatigue than in continuous training.

Baechle and Earle, Essentials of Strength Training and Conditioning (p 87)

Understand Energy Systems to Develop Training Specificity

- **Immediate** – ATP-PC (Phosphagens)
- **Short-term** – Lactic Acid – Glycolysis
- **Long Term** – Oxidative - Aerobic

ATP-PC System

- ≤ 10 seconds
- 30 seconds – 50% ATP-PC/LA
- Intensity – maximal or near maximal
- Active at start of all exercise (regardless of intensity)
- Fast twitch fiber have highest concentration of phosphagens

\[\text{ATP} \rightarrow \text{ADP} + P_I + \text{Energy} \]
\[\text{ADP} + \text{CP} \rightarrow \text{ATP} + \text{Creatine} \]

- Stored Energy
- Endpoint – depletion of muscular stores

ATP/PC

- Recovery – resynthesis of ATP 3-5 min and CP within 8 min
 - 50-70% resynthesis in 30 sec
 - 100% 3-5 min
- Types of Events
 - 100 m sprint
 - Diving
 - Weight lifting
 - Gymnastics
 - Jumping and throwing in track and field
 - Golf

ATP/PC

- Best recovery – minimal activity
 - Why?????
- Work:rest ratio 1:3
- Increasing ATP/PC Stores
 - Sprint Training – related to increased muscle mass
 - Resistance Training
 - Creatine Supplementation
Lactic Acid/Aerobic Glycolysis
- 30-180 seconds
- Intensity - 90-100% HRR
- Breakdown of CHO (Fast Glycolysis) to resynthesize ATP
- CHO → pyruvate → lactic acid → lactate
- When energy demands of cell are high pyruvate converted to lactic acid
- Endpoint – muscle fatigue – not directly caused by lactic acid

Lactic Acid/Aerobic Glycolysis
- Recovery - Decrease energy demands and lactic acid concentration of muscle, incomplete recovery increases lactic acid tolerance
 - ½ LA removed in 15-25 min
 - All LA removed in 60 min
- Recovery – light exercise to decrease ATP resynthesis and increase lactic acid removal
- Work:rest ratio – 1:2
 - Incomplete recovery increases tolerance to LA and trains body to use more LA for fuel

Changes in LT with Training

Lactic Acid/Aerobic Glycolysis
- Types of activities
 - 100 m swimming
 - 800 m track
 - 500 m canoeing
 - 1,000 m speed skating
 - 1,000 m cycling

Aerobic/Oxidative System
- > 180 seconds
- ATP resynthesis through breakdown of CHO via slow glycolysis and fats
- Amino acids not used unless high intensity exercise > 90 min
- Endpoint – lack of availability of glucose and glycogen
- Peripheral changes are important – increase in mitochondria number and activity of mitochondrial enzymes

Aerobic/Oxidative System
- Type of recovery
- Work:rest 1:1/2
- Recovery: light activity
- Types of activities
 - ≥5 Km run
 - Triathlon
 - 1500 m swim
Why interval training?

- Teaches pace
- Train specific energy system – specificity
- Practice skill
- Perform more work – more total exercise at a higher intensity than with longer duration training – reduce risk of injury
- **Do not train like you race!!!!!!!!!!!!!**

Elements of an Interval

- **Work Interval (distance)**
- **Sets**
- **Repetitions**
- **Target distance**
- **Target time**
- **Rest Period**
- **Recovery time**
- 2 sets 10 reps X 400 m in 1:00 with 2:00 active recovery
- Energy system stressed depends on length of time of work interval and rest interval

Types of Training

- **Intervals for ATP-PC System (Sprint)**
 - 0-30 seconds
 - 95-100% effort
 - HR not a good indicator of intensity
 - Little slower than best time
 - 1-3 days/week
 - 1:3 work/rest ratio
 - Recovery – rest (resynthesize ATP)
ATP-PC System (Sprint)
- Note rest interval can affect physiological response
- Shorter rest interval (1min) vs longer (4-5 min) results in an increase in VO₂max
- Aerobic capacity important in athletes who do repeated sprints
- Shorter rest periods require you to decrease intensity of sprint slightly
- Distances short – same or less than competitive distance
- Drills/strength important for optimal performance

Example
- 100 m Sprint Competition
- Each repetition run is 3 sec slower than best time
 - 12 sec best time – 15 sec training time
 - Effort – near maximal (RPE 9)
 - Repetitions – 4-8
 - Rest – 1:3 – 54 seconds (longer if power goal only)
 - Recovery – rest – stretching or walking
 - 2-3 Sets (3-5 min between)

Lactic Acid System
- 30-180 sec Intervals
- 90-100% HRR
 - 1-4 sec faster than average 400 m during a 1500-1600 m race
- 1:2 work:rest ratio
- Recovery – light aerobic exercise speeds removal of lactic acid
- Recovery - incomplete keeps lactic acid levels up and prevents good recovery of ATP-PC system

Example
- 1600 m Competition Distance
- Interval 400 m
- Best Time 5:16, run interval 1-4 sec faster than average 400 m during 1500 m race
- Training Time: 1:20 per 400 m interval
- 5 repetitions
- Work:rest ratio – 1:2 – 2:40 between sets
- Recovery – Active – light aerobic exercise (jog or walk)

Lactate Threshold Runs (Tempo and Cruise Intervals)
- ≥ 5K distances
- Note – lower intensity than lactic acid intervals training
- Goal – gradually raise lactate threshold
- Not need a track
- Intensity – HR at LT + 10 bpm (not more) – not as intense as lactic acid intervals – 25-30 sec/mile slower than 5K pace – comfortably hard
- 2 types – continuous (tempo runs) and intermittent (cruise intervals)
Example - Cruise Intervals
- Athletes – 70-85% HRR at LT to plus 10 bpm
- Same pace as tempo runs – 7:40/mile
- 3-10 min duration
- Rest – 1 min easy jog or walk
- Easier than tempo runs for first time intervals for fitness or weight loss
- Do about anywhere can keep terrain consistent or on treadmill
- Gradually increase duration of cruise interval until can run 20 min at LT

To improve LT, which is better?
LA intervals or Cruise Intervals?
- LT intervals – best for <5-10K
- Takes ½ time with LT intervals to get same benefit
- Intensity of Cruise intervals and tempo runs is better for less fit and those with no prior interval training experience, injury prone, & overtraining prone

Improve VO₂max
- Repeated bouts of reaching and sustaining VO₂max
- Train at VO₂max at a greater time than could sustain in a single run
- Not exceed 15-20 min of actual interval time (not counting rest)
- 3 – 5 min (1/2 – 1 mile) – only a portion of event
- Intensity – 1-4 sec slower than average 400 m during 1600 m race or 5K race pace or slightly slower
- Increase distance, slow pace slightly
- Work:rest ratio - 1:1/2

Options
- 5K 45 minutes 7:15/mile – 7:15 pace
- Straight sets - 12 X 800 m at 3:36 with 1:48 active recovery
- 3 sets of 3 X 800 m at at 3:36 with 1:48 active recovery with 3-5 min between sets
- Try both

Rule of thumb
- Beginner – 1 day of intervals/week (no lactic acid or VO₂max intervals – intensity is too high) – usually lactate threshold intervals (cruise/tempo) are best
- Recreational runner who wants to get faster – a long run (>6 mi), an interval or LT day and an easy day
- Athlete – depends on sport, age, weekly mileage
- Interval training workouts should not exceed 8% of current weekly mileage

Long Steady (Slow) Distance (LSD)
- Continuous Exercise at conversational pace
- 60-120 minutes (30 min for recovery purposes – easy day)
- < Lactate Threshold – 20-30 sec below LT
- Physiological Benefits -
 - Skeletal muscle endurance - 65-70% HRR in most athletes
 - More mitochondria, increased activity of mitochondrial enzymes, less tissue damage
- Distance Runners > 5K – one long run/week (several miles longer than race distance – exception – marathon training)
Other Training
- Repetition Training or Drills
 Improve speed, form, and running economy
 30-90 seconds
 Work:rest ratio – 1:5
 <5% of weekly mileage
 Downhill running
 Uphill running
 Bounding
- Short Intense Bouts (near max) followed by Full Recovery

Interval Rules
- Perform the same workout multiple times before making it more difficult
- Shorten recovery interval before decreasing pace (increasing intensity)
- Intervals (not counting WU and CD) -not >8% weekly mileage
- Not increase total weekly mileage >10%/wk
- Hard/easy days
- If athlete continually gets slower, terminate interval workout.

Steps for Interval Training Workouts
- What energy system to train?
- What is intensity based on HR data or race pace (best)?
- What is distance or time of interval?
- What is work:rest ratio?
- What is type of recovery? Rest or active