In a Newsweek article in 1971, economist and Nobel Laureate Milton Friedman scolded the government for repaying its debt in dollars whose value is eroded by inflation. His prescription was to:

“Let the Treasury promise to pay not $1,000 but a sum that will have the same purchasing power as $1,000 had when the security was issued. Let it pay as interest each year not a fixed number of dollars but that number adjusted for any rise in prices.”

Now, 26 years after the urging of Professor Friedman and a host of commentators before and after him, the U.S. Treasury has unveiled an “inflation-protection security.” This new security, also known as an inflation-indexed or inflation-linked bond, is designed to protect the purchasing power of an investor’s savings by indexing interest and principal payments to consumer prices. If prices go up, so, too, do dollar payments from an indexed bond. Therefore, holders of indexed bonds aren’t hurt by inflation.

The Treasury started its indexed bond program in January 1997 by issuing 10-year inflation-protection bonds, with principal and interest payments linked to the consumer price index for all urban consumers (CPI-U). The indexing program will expand to include bonds of different maturities and other types of financial instruments, such as savings bonds. The
United States joins Canada, Sweden, New Zealand, the United Kingdom, and many other countries that also issue bonds linked to inflation.

This article provides a simple description of the new inflation-protection bonds. We'll consider why indexed bonds can be useful to investors, to the Treasury, and to policymakers in the Federal Reserve.

HOW DO INFLATION-INDEXED BONDS DIFFER FROM CONVENTIONAL BONDS?

Conventional Bonds. Conventional bonds promise fixed dollar payments of interest and principal. The real value, or purchasing power, of a bond’s payment is how many goods and services it can buy. However, real values of future dollar payments are not known when a conventional bond is issued because future inflation is unknown. Therefore, both the purchaser and the issuer of a conventional bond face inflation risk, the risk of unanticipated changes in the purchasing power of the nominal (dollar) payments promised by the bond.

Consider purchasing for $10,000 a one-year bond that pays back your principal investment plus a nominal return of 5 percent. This bond will pay $10,500 at the end of one year. The real value of the $10,500 received in one year depends on what happens to prices. Suppose you expect inflation to be 3 percent over the year. While the nominal payment will be $10,500 at the end of a year, you expect that it will cost $10,300 then to buy what $10,000 buys at the start of the year. Thus, you expect to have $200 of extra purchasing power at the end of the year—a 1.94 percent real increase in purchasing power.1

However, suppose inflation turns out to be 5 percent. In this case, the bond generates a zero real return because goods and services that could be obtained with $10,000 at the start of the year end up costing $10,500 at the end of the year. The higher inflation rate eliminates your expected real return. The beneficiary is whoever issued the bond, since the issuer ends up paying a nominal amount whose purchasing power is eroded by unexpectedly high inflation. But if inflation turns out to be unexpectedly low, your real return rises. If inflation is 1 percent, your real return will be $400, or 3.96 percent.

In general, when inflation is higher than expected, bondholders suffer unanticipated losses of purchasing power. Conversely, when inflation turns out to be lower than expected, bondholders receive unanticipated gains of purchasing power. In such cases, those who issue nominal debt lose, since the real cost of paying off conventional nominal debt rises when inflation unexpectedly falls.

Inflation-Indexed Bonds. With an inflation-indexed bond, the real rate of return is known in advance, and the nominal return varies with the rate of inflation realized over the life of the bond. Hence, neither the purchaser nor the issuer faces a risk that an unanticipated increase or decrease in inflation will erode or boost the purchasing power of the bond’s payments.

Suppose you are offered a one-year bond that costs $10,000 today and that promises a real return of 1.94 percent, which was the real return you expected in the earlier example. The bond promises that, after a year, you will be able to obtain 1.94 percent more goods and services. If inflation turns out to be 3 percent, the face value of the bond will rise to $10,300, and the bond will pay interest equal to 1.94 percent of $10,300, or $200. But if inflation turns out to be 5 percent, the face value of the bond will rise to $10,500, and the interest payment will be $204. In either case, you will be able to buy 1.94 percent more goods and services after a year. (For a more detailed example that compares payments from conventional and indexed bonds with a maturity of more than one year, see Example of Payments on Nominal and Indexed Bonds.)

1 The percentage increase in purchasing power is ($200/($10,300)-100=1.94%.
Example of Payments on Nominal and Indexed Bonds

Consider a 10-year conventional nominal bond and a 10-year inflation-indexed bond. Each bond is purchased at its face, or principal, value of $1000. Although Treasury notes and bonds provide semiannual payments, the bonds in this example are assumed to provide annual coupon payments. Each coupon payment on a conventional bond is the coupon rate stated on the bond times the principal. Each coupon payment on an indexed bond is the coupon rate times the indexed principal. The indexed principal is simply the beginning principal of $1000 scaled up through time at the rate of inflation. We’ll assume that the coupon rate on the indexed bond is 3 percent, and that actual inflation over the 10-year horizon turns out to be a steady 2 percent, equal to expected inflation, and that the coupon rate on the conventional bond is 5.06 percent so that its expected real rate of return equals the coupon rate on the indexed bond.

A schedule of nominal and real values of payments on the bonds is given below. The real values give the purchasing power of the nominal payments. For example, suppose a given item today cost $1. With 2 percent inflation, at the end of the year the same item will cost $1.02, and $1 will purchase .98 (1/1.02) units of the item. So, $50.60 received at the end of year 1 from the nominal bond will purchase 49.61 units.

As the schedule of payments shows, the nominal value of the conventional bond’s principal stays fixed. The real value is eroding through time because of inflation. When received at maturity, the $1000 principal can purchase 820.35 units of the good. In contrast, when the bond was first purchased, that $1000 could buy 1000 units. The payment schedule also shows how the fixed nominal payment of $50.60 per year on the nominal bond has a smaller real value over time because of inflation. Note that for the indexed bond, the real values of the principal and interest payments are preserved for the life of the bond. The nominal principal gets scaled up year by year according to inflation. As the principal gets scaled up, so, too, does the nominal coupon payment to preserve the real return of 3 percent. The indexed bond pays less interest than the nominal bond each year, but that is offset by its larger payment of principal at maturity.

<table>
<thead>
<tr>
<th>Schedule of Payments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Bond</td>
</tr>
<tr>
<td>Year</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

Total Nominal Receipts: $1506
Real Value of Principal at Maturity: $820.35

Total Nominal Receipts: $1554.07
Real Value of Indexed Principal at Maturity: $1000
WHY WILL INVESTORS BUY INDEXED BONDS?
Investors who desire predictable real cash flows can now include indexed bonds in their portfolios. The certain real return will be attractive to investors who are particularly risk averse. It will also be attractive to savers who want to protect their savings from being eroded by inflation.

More generally, inflation-indexed bonds can be useful in diversifying any portfolio of assets, as investors in other countries have already found. However, markets for indexed bonds in other countries tend to be small and have relatively low amounts of trading activity (see Experiences in Other Countries), reflecting the fact that indexed bonds are particularly attractive to specific groups that tend to buy the bonds and hold them until they mature.

WHY DOES THE U.S. TREASURY SELL Indexed BONDS?
For many years the Treasury opposed issuing indexed debt for two main reasons. One was concern that there would not be strong demand from investors. The second was that some Treasury officials believed that issuing indexed debt could increase borrowing costs by fragmenting (“balkanizing”) the overall Treasury bond market. According to this idea, the market for Treasury bonds would fragment and become increasingly tailored to specific classes of investors. As a result, trade across market segments would be reduced, and the liquidity of all Treasury bonds would fall. If Treasury assets become less liquid, investors would demand a premium to compensate for low liquidity, thus raising the Treasury’s cost of borrowing. Given its decision to issue indexed bonds, however, the Treasury has evidently concluded that benefits from issuing them outweigh concerns about low demand and balkanization. What are those benefits?

Lower Borrowing Costs. Since the real return on conventional bonds is subject to inflation risk, holders of these bonds demand a “risk premium” in the form of a higher yield relative to an asset with no such risk. Inflation-indexed bonds, however, remove the investor’s inflation risk. So by issuing indexed bonds, the Treasury can avoid paying the inflation risk premium found in nominal interest rates on conventional bonds and can thereby lower its borrowing costs.

The size of the inflation risk premium is difficult to measure. Recent academic research suggests that it might be 50 to 100 basis points.

3 Liquidity refers to the ease with which an investor can sell a bond in a secondary market.

4 Some wonder why inflation-indexed securities have not been issued by the private sector. In fact, they have, but they have not flourished. Some securities, such as variable rate mortgages, are indexed, but not directly to inflation. In the mid-1980s, the Coffee, Sugar, and Cocoa Exchange attempted to trade futures contracts based on the Consumer Price Index. The CPI futures were offered beginning in June 1985, but died in 1991. According to James Bowe, president of the exchange, CPI futures didn’t catch on because there was no primary market for inflation to trade against, as there is for futures contracts based on commodities or financial assets. That is, certain arbitrage opportunities were not present. With the new inflation-indexed bonds to trade against, inflation futures or real interest rate futures may become viable. For a discussion of the CPI futures market, see Brian Horrigan, “The CPI Futures Market: The Inflation Hedge That Won’t Grow,” Federal Reserve Bank of Philadelphia Business Review, May/June 1987.

That is, the interest rate paid on conventional nominal bonds is between 0.5 and 1.0 percentage points higher than it would be if investors did not face the risk that unexpected movements in inflation could change the real value of their investments.

At the inaugural auction of indexed bonds on January 29, 1997, the Treasury sold $7 billion of 10-year indexed bonds at a real yield of 3.45 percent. On that date, the yield on conventional 10-year Treasury bonds was 6.63 percent. According to inflation forecasts taken from the November 1996 and February 1997 Survey of Professional Forecaster, inflation is expected to average 3.0 percent per year from 1997 to 2007. Those three percentages suggest an inflation risk premium of 18 basis points in the yield on the conventional bond. Therefore, the Treasury saved 18 basis points on the yield of the indexed bond by avoiding the inflation risk premium. It is difficult to predict, however, whether saving

6 The risk premium of 18 basis points is calculated as follows: Add 3.0 percent expected inflation to the indexed bond’s real yield of 3.45 percent to get an expected nominal yield, without any inflation risk premium, of 6.45 percent. Subtract 6.45 percent from the conventional bond’s yield of 6.63 percent to arrive at 18 basis points.
ings in future indexed bond issues will be on the same order, especially since the January 29 auction offered the first indexed bond issue, and market participants may not have been familiar with details of the new bonds.

Let’s suppose that the inflation risk premium on conventional Treasury bonds of all maturities eventually settles at 50 basis points—the low end of the range suggested by academic studies. How much could the Treasury save by eliminating the inflation risk premium on even a small fraction of its outstanding debt? Lots, because the Treasury borrows lots of money. The total U.S. government debt held by investors as of September 1996 was about $3.4 trillion. If the Treasury over time substitutes inflation-indexed bonds for 15 percent of that debt and, as a consequence, saves the inflation risk premium on 15 percent of $3.4 trillion, it can generate a saving of $2.55 billion in interest payments each year. This kind of potential cost saving helps explain why the Treasury has decided to issue indexed bonds.

While indexed bonds allow the Treasury to avoid paying the inflation risk premium on some of its debt, the Treasury faces the risk of increased nominal costs of debt arising from future inflation. When inflation rises, nominal payments on indexed bonds also rise to preserve the real interest rate promised by the bonds. Thus, with indexed bonds, the Treasury takes on uncertainty over future nominal payments as investors shed it. Many would agree with this transfer on the grounds that the government may be in a better position than investors to handle inflation uncertainty.

Less Volatile Real Costs. The Treasury knows what its real cost of borrowing will be when it issues an indexed bond, but the dollar values of its future interest and principal payments are uncertain. In contrast, the Treasury knows the dollar values of its future payments when it issues a conventional bond, but is uncertain about its real cost of borrowing.

To see how inflation can affect the real cost of borrowing, consider the 10-year bonds issued in January 1997: a 10-year indexed bond with a real yield of 3.45 percent, and a 10-year conventional bond with a nominal yield of 6.63 percent. Suppose that an investor in the indexed bond reinvests interest payments annually at the real yield of 3.45 percent, and that an investor in the conventional bond reinvests interest payments annually at the nominal yield of 6.63 percent. At the end of 10 years, the investor in the indexed bond will be able to purchase goods that cost $14,037.99 in January 1997. That number represents the real value in 10 years of the Treasury’s payments on the principal and reinvested interest to the investor. This real value of payments is known to the Treasury and investors when the indexed bond is issued.

The real value of payments on the conventional bond depends on what happens with inflation. Suppose investors expected inflation to average around 3 percent over the 10-year life of the bonds. If inflation turns out to be a steady 3 percent over the 10 years, the investor in the conventional bond will be able to purchase goods that cost $14,139.10 in January 1997, close to the purchasing power from the indexed bond. If inflation turns out to be a steady 1 percent—lower than expected—the investor in the conventional bond will be able to purchase $17,202.05 worth of goods in 10 years. In that case, the Treasury will make higher real payments than expected because inflation was lower than expected. If inflation turns out to be a steady 5 percent—higher than expected—the investor will be able to purchase $11,665.44 worth of goods. In that case, the Treasury will

7 The potential reduction in the budget deficit may be smaller. If the Treasury cuts its gross interest payments by $2.55 billion, it also cuts the tax revenue it would capture by taxing investors’ interest earnings. If all investors faced a marginal tax rate of 30 percent and none held government bonds in tax-exempt accounts, the Treasury’s saving, net of the tax effect, would be $1.785 billion ($2.55 billion times (1-.3)), still a substantial sum.
make lower real payments than expected.

Thus, with the conventional bond the Treasury faces uncertainty about the real values of the scheduled nominal payments it will make. With the indexed bond, the Treasury does not face volatile future real costs of borrowing. It knows the real cost of its borrowing and faces uncertainty about how many dollars it will be paying to provide a scheduled real return.8

FEATURES OF THE NEW BONDS

As we noted, the U.S. Treasury issued its first inflation-indexed bonds—10-year bonds with a 3.45 percent real coupon rate—in January 1997. As with conventional bonds, these inflation-indexed securities provide semiannual coupon payments determined by a fixed rate of interest and return the principal at maturity. In contrast to conventional bonds, the principal on the indexed bond is adjusted by any change in the level of the Consumer Price Index from the date of issue.9 Each semiannual coupon payment is arrived at by multiplying one-half of the stated annual coupon interest rate by the indexed principal.

The Price Index. For U.S. inflation-indexed bonds, the principal is indexed to the nonseasonally adjusted CPI-U, which tracks prices of a basket of goods purchased by a typical urban consumer. It is announced and published regularly by the Labor Department. Although the Treasury could have chosen a number of other price indexes, it chose the CPI-U because it is well known, is reported regularly, and encompasses a basket of goods representative of what consumers typically purchase.

Different savers have different objectives. Some save for their children’s education, while others save for medical care they may need in old age. Consequently, some are concerned about the future prices of higher education, while others are more concerned about the future prices of medical care. If prices that concern a particular saver behave differently from prices captured by the CPI-U, an inflation-indexed bond will not entirely protect the purchasing power of concern to the saver.10

Many economists believe that the Consumer Price Index overstates the true rate at which the cost of living is rising.11 If so, won’t indexed bonds tied to the CPI-U overcompensate investors in real terms? Probably not. Participants in the bond market take into account their perceptions of any bias in the CPI-U’s measurement of inflation when they price securities. Investors may, however, face some risks if the bias changes over time and the changes are not predictable.

At various times, the federal agencies responsible for compiling price indexes revise their calculation methods. How will revisions to the CPI-U affect indexation adjustments to the new

8 Aside from saving by eliminating inflation risk premiums, the Treasury would expect to reduce real financing costs by issuing indexed bonds only if its expectations for inflation are lower than investors’. In the long run, such a divergence of expectations is unlikely. Note, also, that any real cost to the Treasury from fixed-rate bonds when inflation falls is also a real benefit to holders of the bonds. The effect on welfare for the economy as a whole is difficult to assess. For a broader discussion of some of the welfare effects, see John Campbell and Robert Shiller’s “A Scorecard for Indexed Government Debt,” National Bureau of Economic Research Working Paper 5587, May 1996.

9 More specifically, the adjustment is for the change in the Consumer Price Index from three months before the bond’s issue date to three months before the scheduled payment. See the discussion of the indexation lag later in this article.

10 Over the past 10 years the rate of inflation for college tuition has been close to 8 percent, and for medical care it has been close to 7 percent. These rates are nearly double the rate of CPI-U inflation for the same period.

bonds? According to the Treasury, any revision that influences future measures of the CPI-U will be used for future calculations of an indexed bond’s payments. Any revision that influences past CPI-U statistics, however, will not change previous calculations of principal or interest, thus ensuring that payments already made will not be changed retroactively by formula changes. If the base year for computing the CPI-U changes, the Treasury plans to continue to use the CPI-U calculated from the base year in effect when the indexed bond was first issued, “as long as that series is published.”

There is, of course, always a possibility that prices will decline (deflation). Then, the inflation-adjusted principal and nominal interest payments on inflation-indexed bonds will fall. The inflation-adjusted principal could end up being less than the principal value when the bond or note was issued. At maturity, however, the Treasury will never repay less than the bond’s initial face value. The Treasury does not expect to have to implement this “minimum guarantee” because it does not expect a prolonged decline in consumer prices to occur.

Indexation Lag. Like inflation-indexed bonds in other countries, indexed U.S. bonds are subject to an “indexation lag”—bond payments are linked to a lagged value of a price index. The lag for indexed government bonds in the United Kingdom (known as indexed gilts) is eight months. For Canadian indexed bonds and the new U.S. indexed bonds, the lag is three months. The principal value of a new U.S. indexed bond is adjusted semiannually by multiplying the bond’s initial principal by an “index ratio” that accounts for movements in the CPI-U. Index ratios are announced by the Treasury.

A three-month lag means that each semianual interest payment from an indexed bond is determined three months in advance. For example, the October 1 interest payment on an indexed bond issued on April 1 will equal one-half of the bond’s annual coupon rate multiplied by the inflation-adjusted principal on October 1. The inflation adjustment from April 1 to October 1 will be based on the change in the CPI-U from January to July. As with conventional bonds, a predetermined nominal payment means inflation risk. In this example, the risk is that inflation from April to October will not equal inflation from January to July; if they differ, the real value of October’s coupon payment will be higher or lower than expected. However, the risk of large differences in inflation between overlapping six-month periods is small. In addition, any difference will be made up in the next interest payment, six months later, by the ongoing adjustments made to the indexed bond’s principal.

Because of the indexation lag, an indexed bond also lacks inflation protection for a short period right before it matures. The final inflation adjustment to the bond’s principal will be determined by the value of the CPI-U for three months before the final nominal payment is made; so, in effect, for those last three months, the nominal payment on the bond is predeter-

12 Revision of the calculations could mean anything from changing the base period used to construct the price index series to modifying definitions of what goods are in the basket that the price index covers.

14 Monthly CPI-U data and daily index ratios will be readily available from press releases that can be obtained through automated fax from the Treasury by calling 202-622-2040. Index ratios and reference CPIs can also be obtained on the Internet at the home page for the Bureau of Public Debt at http://www.publicdebt.treas.gov.

15 Because of the time necessary for collecting price information, the CPI-U for July is reported in August. Thus, the October 1 interest payment is determined by data collected in July, but it isn’t known with certainty until August.
mired, just like that for a conventional bond. Of course, on a long-term indexed bond, the final period of inflation risk is very short relative to the bond’s entire life.

Trading Indexed Bonds. The Treasury’s new indexed bonds, like conventional Treasury notes and bonds, provide semiannual interest payments. Consider a bond trade between a seller and buyer in the middle of the six-month period between interest payments. As part of the trade, the buyer must pay the seller for interest accrued since the last payment.

For a conventional bond, calculation of accrued interest is simple because the amount of the next nominal payment is known. A buyer of a conventional bond halfway through one of the interest periods can simply compensate the seller for one-half of the next interest payment. For indexed bonds, the indexation lag makes it possible for traders to know what the inflation-adjusted face value of the bond is when a trade is being executed. Using this knowledge, buyers of bonds can easily compensate sellers for interest accrued plus any change in principal value during the portion of an interest period in which the seller still held the bond. Making it easy to calculate interest accrued and principal adjustments during the life of a bond means that it will be easier to trade the bonds in secondary markets, thereby enhancing liquidity.

In addition to Treasury indexed bonds, other types of indexed securities have begun to emerge. After the Treasury’s initial auction of indexed bonds, several private firms, government-sponsored enterprises, and some municipalities offered inflation-adjusted securities. It is too early to tell whether these recent offerings amount to experimentation with a new asset class or whether the range of indexed security issues will rapidly expand.

Taxes and Types of Investors. As with conventional bonds, the semiannual interest payments on inflation-indexed bonds will be taxable. Investors also will be required to report as income every year any increase in the value of the principal that arises because of inflation, even though the increase in principal is not received until the bond matures or is sold. Because of this tax treatment, the after-tax yield on indexed bonds held in taxable accounts will not be fully insulated from inflation. For this reason, many people have predicted that indexed bonds will be most useful for tax-exempt investors such as pension funds and tax-deferred retirement funds like IRAs or 401k plans. According to the Treasury Department:

“We believe that inflation-protection securities would appeal initially to investors saving for retirement in tax-deferred retirement accounts and to entities such as pension funds whose liabilities are sensitive to inflation. Once the market becomes established, other institutional investors, such as insurance companies, might become potential investors if they begin to market new inflation-linked products, such as an inflation-indexed annuity.”

16 Increases in principal from inflation adjustments are treated as ordinary taxable income each year to ensure parity of tax treatment of indexed bonds with discount bonds sold at prices below their principal values. The Tax Equity and Fiscal Responsibility Act of 1982 requires that some of the discount of corporate and Treasury securities be included as ordinary income each year for tax purposes. This method of taxation also holds for stripped components of Treasury securities.

17 Pension and retirement funds may prove to be a significant pool of investors. In 1991, for example, private pension funds, state and local government retirement funds, and IRAs totaled over $3 trillion. At the end of 1991, marketable Treasury debt in the form of notes and bonds was close to $2 trillion. If the Treasury had issued 5 percent of this in the form of indexed debt, it would have sought a market base of $100 billion, which was around 3.3 percent of pension and retirement funds.

The new U.S. inflation-protection securities have virtually the same features as Canadian real return bonds (RRBs), inflation-linked bonds first issued in 1991. In particular, Canadian real return bonds receive the same tax treatment as the new U.S. indexed bonds. Canadian RRBs are held almost exclusively in tax-deferred investment plans. In addition, since RRBs are the only fixed-income asset providing a hedge against inflation in Canada, they are attractive to investors whose liabilities are linked to inflation. According to the Bank of Canada, the major investors in RRBs are pension funds and life insurance companies.19

In the United Kingdom as well, the major investors in indexed gilts are pension funds and insurance companies.20 However, from 1982 until 1996 inflation-related appreciation of an indexed gilt’s principal was exempt from taxes because it was treated as a capital gain. Thus, indexed gilts had a tax advantage over conventional gilts.21 Some investors thought this advantage was important: tax-paying investors held a significant fraction of indexed gilts, especially those with short maturities, though the majority of investors holding indexed gilts were tax-exempt.

Other Details. Indexed U.S. bonds are auctioned quarterly, on the 15th of January, April, July, and October. The auction is a single-price auction in which all bidders pay the same price. The price is stated in terms of the yield investors are willing to accept, and all accepted competitive bids receive the highest accepted real yield on a bond.22 The minimum denomination is $1000 (value of principal at issuance), and higher denominations must be in multiples of $1000. Indexed bonds are available only in book-entry form, which means that securities are held electronically, not in paper form.23 Inflation-indexed bonds are also eligible for “stripping.” When bond traders strip a bond, they sell claims to its interest payments to some investors and claims to the principal payment to others.

WHY MIGHT POLICYMAKERS LOOK AT RETURNS ON INDEXED BONDS?

Measuring Expectations and Perceptions. Inflation is notoriously difficult to forecast, especially over long horizons. Monetary policymakers find it difficult to gauge public expectations about future inflation and public perceptions about how monetary policy actions will affect inflation. Having both inflation-indexed bonds and conventional nominal bonds can help. Because indexed bonds provide a direct measure of real returns, they make it pos-

Note that the tax liability on an indexed bond held in a tax-deferred account is postponed but will still depend positively on inflation adjustments to the bond’s principal.

21 For many tax-paying investors, the tax advantage of indexed gilts is outweighed by other factors. One important factor is that the volume of trade in secondary markets for indexed gilts is far smaller than that for conventional nominal gilts. Consequently, investors may find it easier to sell nominal gilts in secondary markets. See Francis Breedon’s article, “Bond Prices and Market Expectations of Inflation,” Bank of England Quarterly Bulletin, May 1995.

23 The indexed securities are available through the commercial book-entry system (TRADES) or through TREASURY DIRECT for investors who have a direct account with the Treasury. TREASURY DIRECT is operated by Federal Reserve Banks acting as fiscal agents for the Treasury.
possible to infer information about expected inflation.

We can think of a nominal interest rate on a conventional bond as being approximately equal to the sum of an expected real interest rate and expected inflation. The real interest rate, in turn, is the sum of a risk-free real rate and an inflation risk premium.\(^{24}\) Policymakers looking only at interest rates on conventional nominal bonds lack information about each separate component. Without such information, policymakers cannot tell whether movements in nominal interest rates reflect changes in market expectations about inflation, changes in real interest rates, or even changes in inflation risk premiums.

Some Measures Already Exist. Monetary policymakers already have indirect measures of inflation expectations. For example, there are statistical estimates of inflation expectations based on yield curves for existing conventional Treasury securities. However, these estimates are imprecise. Policymakers can also use measures of expected inflation as reported in surveys. Survey respondents do not, however, always have the incentive or ability to provide accurate responses.\(^{25}\) In addition, since surveys are taken infrequently, policymakers rarely have up-to-date measures of market expectations of inflation or of short-run changes in expected inflation.

Indexed Bonds Can Provide Additional Information. How do yields on conventional and indexed bonds provide information about inflation expectations and real returns? If the real yield promised by an inflation-indexed bond equals the expected real yield on a conventional bond of like maturity, the difference between the conventional bond’s nominal yield and the indexed bond’s real yield roughly equals expected inflation plus the inflation risk premium. Thus, assuming an unchanged inflation risk premium, if conventional bond yields rise and indexed bond yields are unchanged, we can infer that there has been a rise in inflation expectations. If yields on conventional and indexed bonds rise by the same amount, we can infer that real interest rates have risen with no change in expected inflation. Looking at conventional and indexed Treasury bonds with various maturities, we can obtain information about real interest rates and market expectations of inflation over various horizons. The experiences of the Bank of England and the Bank of Canada with estimating inflation expectations, however, reveal that things are more difficult than simply subtracting an indexed bond’s yield from a nominal bond’s yield (see *Measuring Inflation Expectations from Conventional and Indexed Bonds*).

Information Can Be Useful to Monetary Policymakers. While there are practical difficulties in estimating expected inflation and real interest rates from yields on nominal and indexed bonds, information about expected inflation and real rates can be useful to monetary policymakers. Such information can help a policymaker interpret current conditions and forecast future conditions.\(^{26}\) Information about real rates and expected inflation could, for example, allow a policymaker to decide whether increases in long-term bond yields reflect rising inflation expectations or expectations that real interest rates will rise. An accurate estimate of expected inflation could help in interpreting observed movements in various asset

\(^{24}\) For bonds other than U.S. government bonds, the real interest rate may also include a premium for the risk of default.

Two relationships are useful for obtaining measures of market expectations about inflation from yields on conventional and indexed bonds: the expectations theory of the yield curve and the Fisher relation.

The Expectations Theory of the Yield Curve. This theory suggests that the yield on a long-term bond reflects expectations of future yields on short-term bonds. In choosing between a long- and short-term bond, an investor compares the long-term yield with what she expects to be able to obtain from a sequence of short-term securities over the long-term bond’s life. If she expects, for example, that short-term yields will increase next year, she will demand a higher yield now on a two-year bond than on a one-year bond because she expects that in a year’s time, the one-year bond’s yield will be higher. Unless the yield on the current two-year bond is higher than the yield on the one-year bond, she would be better off investing in a sequence of two one-year bonds. The expectations theory of the yield curve allows us to infer the market’s expectation of the one-year interest rate in 1998 from observations of one- and two-year interest rates in 1997. Similarly, it allows us to infer the market’s expectation of the one-year interest rate in 1999 from observations of two- and three-year interest rates in 1997, and so on.

The Fisher Relation. The Fisher relation specifies that the nominal interest rate equals the sum of the expected real interest rate and the rate of inflation. This reflects our discussion that a conventional nominal bond yield consists of a real yield that an investor expects plus compensation for expected average inflation over the bond’s life. As we discussed in the text, expected real interest rates may include inflation risk premiums, so an extended Fisher relation says that a nominal interest rate equals the sum of a riskless expected real interest rate, expected inflation, and an inflation risk premium. (Technically, the Fisher relation is exactly correct only for continuous rates of return and inflation. For annual rates, it is approximately correct.)

Practical Difficulties in Measuring Inflation Expectations. In practice, the expectations theory may not hold exactly. For a variety of reasons, long-term yields aren’t only averages of actual and expected future short-term yields. It is also unlikely that the difference between the yields on a conventional and an indexed bond contains only a measure of expected inflation plus an inflation risk premium. So, in practice, measuring inflation expectations is more difficult than simple subtraction. Practical difficulties include the following.

Coupon payments. Different bonds have different coupon payments. Consequently, yields on conventional and indexed bonds trading in the market with different coupons have to be calculated on a comparable basis. The Bank of England does this by calculating a zero-coupon equivalent yield, which is the
yield on a hypothetical bond that has no coupon and makes only one future payment. Looking at zero-coupon nominal and real yields at various maturities, the Bank of England constructs a series of average inflation expectations over the next year, two years, and so on. These expectations are then converted into implied forward rates that represent inflation expected in each future year. The Bank of Canada, which has a shorter experience with indexed bonds than the United Kingdom, uses a similar approach to measure expected inflation.

Limited number of indexed bonds. There are a limited number of indexed bonds, so not all maturities are covered.

Indexation lag. Because of this lag, there remains a small amount of inflation risk in indexed bonds, which needs to be removed to accurately measure the bonds’ real yields.

Market size and liquidity risk. Secondary markets for indexed bonds are small and not as liquid as markets for conventional bonds largely because of how the bonds are taxed and the investment objectives of participants. Investors in indexed bonds may demand a premium in the form of a higher real return relative to that expected from conventional bonds to compensate for low volume of trading activity and the small size of the indexed bond market. Consequently, the difference in yields between conventional and indexed bonds will measure the liquidity risk premium as well as expected inflation and inflation risk premiums.

Nature of investors. Investors in indexed bonds include people with a particular aversion to inflation risk. These investors may be willing to obtain a lower real return on indexed bonds than average investors. The effect such investors have on yields can make the differential between conventional and indexed bonds overstate inflation expected by an average person.

Tax treatment. As mentioned in the text, changes in the principal on U.S. indexed bonds from inflation adjustments will be taxed when the adjustments are made. For tax-paying investors who buy indexed bonds, the taxation of inflation adjustments means that their after-tax returns are not fully insulated from inflation. Such investors may seek compensation for the effects of expected inflation on their after-tax yields in the form of higher before-tax yields on the indexed bonds. If indexed bond yields are affected, the difference between conventional and indexed bonds will include a tax effect as well as expected inflation and inflation risk premiums.

a U.S. indexed bonds will be strippable into separate claims on interest and on principal payments. A claim on one future payment is a zero-coupon bond. Thus, market data on zero-coupon yields in the United States will be available from indexed bond strips.

yields, since expected inflation matters for investors’ decisions about asset allocations. An accurate estimate of real interest rates might help in forecasting future economic activity and inflation. Perceived real interest rates determine the real cost of capital for business investment, which is an important determinant of economic activity and growth.

Indexed bonds together with conventional bonds may provide policymakers in the United States with useful information about real returns and expectations about inflation. If so, such information will add to the available data about the state of the economy and expectations about the future. As Alan Greenspan, chairman of the Federal Reserve, has remarked:

“...I am confident that we would make use of new market-based indicators of inflation and real interest rates that would be made available by the issue of indexed bonds. Such measures may not mark the way as unambiguously as promised by their most vocal adherents, but they would help.”

CONCLUSION

The new inflation-indexed bonds issued by the U.S. Treasury offer an interesting and useful financial innovation. For the Treasury, indexed bonds promise to lower some costs associated with financing U.S. debt. For policymakers interested in inflation expectations and real interest rates, yields on the new indexed bonds can be informative. And for investors, indexed bonds offer additional investment opportunities and protection against unanticipated real losses and gains that arise with nominal debt and unexpected movements in inflation.