The Science of Therapeutic Modalities

Chapter 1

Objectives

- Define the electromagnetic and acoustic spectra
- Identify the therapeutic modalities classified within the electromagnetic and acoustic spectra
- Discuss the relationship between wavelength and frequency
- Apply the laws that govern the effects of electromagnetic and acoustic energy to therapeutic modalities

Forms of Energy Utilized by Therapeutic Modalities

- Generally classified into one of two spectra
 - Electromagnetic Spectrum
 - Acoustic Spectrum

Electromagnetic Spectrum

- Electrical stimulating currents
- Shortwave diathermy
- Microwave diathermy
- Infrared
 - Cold packs
 - Cold whirlpool
 - Hot whirlpool
 - Paraffin
 - Hydrocollator
- Red (visible light – laser)
- Ultraviolet

Electromagnetic Spectrum

- All radiant energy travels at a constant velocity (300 million meters per second)
- Velocity = wavelength x frequency
Electromagnetic Spectrum

- **Wavelength** – distance between the peak of one wave and the peak of the next wave
- **Frequency** – the number of waves occurring in 1 second (measured in Hz – hertz)

- Velocity = wavelength x frequency
- Inverse relationship between wavelength and frequency

Electromagnetic Spectrum

- **Electrical stimulating currents**
- **Shortwave diathermy**
- **Microwave diathermy**
- **Infrared**
 - Cold packs
 - Hot whirlpool
 - Paraffin
 - Hydrocollator
- **Red (visible light – laser)**
- **Ultraviolet**

<table>
<thead>
<tr>
<th>Therapeutic Modalities</th>
<th>Wavelength</th>
<th>Frequency</th>
<th>Depth of penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical stimulating currents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shortwave diathermy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microwave diathermy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrared</td>
<td>longest</td>
<td>lowest</td>
<td>greatest</td>
</tr>
<tr>
<td>Red (visible light – laser)</td>
<td>shortest</td>
<td>highest</td>
<td>least</td>
</tr>
<tr>
<td>Ultraviolet</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Therapeutic Modalities</th>
<th>Wavelength</th>
<th>Frequency</th>
<th>Depth of penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Therapeutic Modalities</th>
<th>Wavelength</th>
<th>Frequency</th>
<th>Depth of penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refracted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorbed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Laws Governing the Effects of Electromagnetic Radiations

- Generally, radiations with the longest wavelengths will have the greatest depth of penetrations, regardless of the frequency.
- A variety of factors influence depth of penetration – these will be discussed later as we study each modality.

- **Arndt-Schultz Principle**
 - No reactions or physiological changes will occur within the tissues if insufficient energy is absorbed to stimulate the absorbing tissues (target tissues).
Laws Governing the Effects of Electromagnetic Radiations

Arndt-Schultz Principle

Application 1 — to achieve numbness or a decrease in muscle spasm from an ice bag application, the ice bag must be left on long enough for the target tissues to be cooled — longer for deeper tissues — less time for more superficial tissues.

Arndt-Schultz Principle

Application 2 — to produce a muscle contraction using electrical muscle stimulation, the current must be increased until enough energy is absorbed to depolarize the motor nerve.

Laws Governing the Effects of Electromagnetic Radiations

Law of Grothus-Draper

- Describes the inverse relationship between energy absorption and penetration to deeper tissues.
- If the energy is not absorbed by the superficial tissues, it will penetrate to deeper tissues.

![Diagram of energy absorption and penetration](image)

Cosine Law

- Radiant energy is more likely to be transmitted to deeper tissues if the radiation is applied at a right angle to the area being treated.

![Energy Source Diagram](image)

Inverse Square Law

- Intensity of radiation is inversely related to the square of the distance from the energy source.
- Example:
 - When using an infrared lamp to heat the low back:
 - the closer the lamp is to the skin (shorter distance), the greater the heat intensity
 - The greater the distance between the skin and lamp, the less heat intensity is applied

Acoustical Spectrum

- The range of frequencies and wavelengths of sound waves.
- Ultrasound is the only modality classified in the acoustical spectrum.
- Ultrasound produces heat through mechanical vibrations.
Acoustical Energy
- The human ear can detect acoustical frequencies up to 20,000 Hz
- Therapeutic ultrasound utilizes frequencies from 1 to 3 MHz (megahertz)
- At 1 MHz, 50% of the ultrasound energy will penetrate to a depth of 5 cm

Therapeutic Ultrasound
- Classified as a “deep-heating” modality because of its ability to penetrate to deeper tissues than most electromagnetic modalities
- Other “deep-heating” modalities
 - Shortwave diathermy
 - Microwave diathermy

Therapeutic Ultrasound
- The denser the tissue, the greater the velocity of energy transmission
 - Speed of transmission greater in bone than fat tissue (bone is denser than fat tissue)

Objectives
- Define the electromagnetic and acoustic spectra
- Identify the therapeutic modalities classified within the electromagnetic and acoustic spectra
- Discuss the relationship between wavelength and frequency
- Apply the laws that govern the effects of electromagnetic and acoustic energy to therapeutic modalities

What questions do you have?

What’s Next?
Prior to class on Tuesday:
Read Chapter 2 – The Healing Process