1. **Pathophysiology**

 Chapter 2

2. **Objectives**

 - Discuss the importance of homeostasis
 - Discuss the concepts of pathophysiology
 - Briefly review normal physiology

3. **Homeostasis**

 - The body's attempt to maintain balance or equilibrium
 - fluids
 - chemicals
 - energy

4. **Homeostasis**

 - The process of shock occurs due to the body's attempt to maintain homeostasis
 - Severe bleeding can cause loss of blood volume
 - The body attempts to maintain blood flow to vital organs ➔ peripheral vasoconstriction (pale, clammy skin)
 - Low blood pressure occurs due to decreased blood volume
 - Increased heart rate (tachycardia) occurs to maintain blood flow to vital organs

5. **Pathophysiology**

 - The physiology of disease
 - Cellular mechanics of disease & their consequences

6. **Pathophysiology**

 - Disease/injury damages one or more:
 - cell structures
 - impairment of tissues
 - impairment of organ function
 - effects the associated systems

7. **Pathophysiology**

 - Cell damage initiates a response to try to:
 - limit the disease process
 - initiate cell repair
 - restore homeostasis

8. **Pathophysiology**

 - When damaged, cells either adapt or die
 - Cell adaptation
 - Atrophy –
 - Hypertrophy –
 - Hyperplasia –
 - Metaplasia –
 - Dysplasia –
Pathophysiology

- All cells respond to injury/disease with inflammation (infection)
 - local
 - systemic

Acute Inflammation

- Damaged cells release histamine, bradykinin, & prostaglandin
- These chemicals cause local vasodilation and increased cellular permeability
- Increase blood flow to the area & allows proteins and plasma to seep into the interstitial fluids
- The proteins interact with fibrin to form platelet plug & clot at damaged site

Acute Inflammation

- The chemicals released earlier now attract leukocytes from the blood
- phagocytes
- Engulf & digest cellular debris
- The proteins interact with fibrin to form platelet plug & clot at damaged site

Acute Inflammation

- The excess interstitial fluid causes an increase in tissue pressure relative to capillary pressure
- vasoconstriction
- Ischemia to normal, healthy cells
- Leads to increased cell damage
 (secondary hypoxic injury)

Acute Inflammation

- These processes produce the classic signs & symptoms of inflammation
 - redness
 - pain
 - warmth
 - swelling
- Acute phase lasts approx. 48-72 hours

Chronic Inflammation

- Very destructive to cells
- Usually have greater production of scar tissue
- Symptoms are similar but with less intensity

Infection

- The body’s response to invading microorganisms
- More systemic than typical inflammatory response
- Leukocytes activate the medulla to cause fever
- Once the microorganism has been eliminated the fever breaks

Infection
See book for s & s of fever (pg. 23)

17

Tissues’ Response to Cellular Damage

• Bone
• Connective tissue, epithelium, endothelium
• Muscle & nerve

See Book

18

Questions?