Basic Principles of Electricity
Chapter 4

Modalities and Electricity

- Certain modalities can take electrical energy and convert it to produce a physiological response in human tissue.
- Which modalities require electrical energy?

Electrical Currents

- All matter is composed of charged particles or ions.
- Ions
 - Anion
 - Gains electron
 - Negative charge
 - Cathion
 - Loses electron
 - Positive Charge

Electrical Currents (Con't)

- Electricity is:
 - Flow of charged particles.
- Electrical current:
 - Net movement of electrons
 - Flow from neg. to pos.
 - Flow from higher to lower concentration
- Current:
 - Flow from one point to another.

Ampere

- Unit of measure that indicates the rate in which electrons move past a given point.
- 1 ampere = 1 coulomb/sec
- In modalities: measured in milliamps (1/1000 amp) or microamps (1/1,000,000 amp).

Coulomb’s

- The number of electrons moving
- 1 coulomb = 6.25 x 10^{18} electrons per second.
- Opposites attract, likes repel
Electromotive Force

- Imbalance in electrons
- Potential difference between two points = Voltage
 - When a proper conductor connects the two points the electrons will move from higher to lower concentrations.
- Unit of Measure: Volt

Conductance

- The ease in which a current flows along a conducting medium
- Conductor: Materials that permit the free movement of electrons
 - Metals: copper, gold, silver, aluminum
 - Electrolyte solutions

Insulators

- Materials that resist current flow
- Contain few free electrons
- Offer great resistance to electron flow
- Examples: wood, glass, and air.

Electrical Impedance

- Opposition to the flow of electrons in a conducting material
- Unit of Measure: Ohm

Ohm’s Law

- The current in an electrical circuit is directly proportional to the voltage and inversely proportional to the resistance.
- Current Flow = Voltage/Resistance
 - Voltage = force needed to cause flow
 - Resistance = depends on medium being used.

Electrical Power

- Product of the voltage and amount of current flowing.
- Unit of Measure: Watts
- Watts = Volts x Amperes
- Indicates the rate that electrical power is being used.
Electrical Circuits

- Series Circuit
 - Has 1 path for charges to move along
 - Move in a series going from 1 resistor to the next
 - If one item is broken that no charge occurs. (ex. Holiday lights)

- Parallel Circuits
 - Has multiple paths to move along
 - If one item is broken no charge will move through that path, but others will continue to have flow. (ex.)

Electrotherapeutic Currents

- Three types
 - Direct Current (DC)
 - Alternating Current (AC)
 - Pulsitile Current

Direct Current

- AKA: galvanic current
- Has uninterrupted unidirectional flow electrons toward the positive pole
- On most newer machines polarity can be either positive or negative.
- Monophasic current

Alternating Current

- Continuous Automatic reversal of polarity between positive and negative poles
- Electrons will always move from negative to positive pole.
- Biphasic current
- Can be symmetrical or asymmetrical

Pulsitile Current

- Contain three or more pulses grouped together called bursts, packets, or envelopes.
- Pulses will be interrupted for a short interval and then repeated again.
- Polyphasic current
- Examples: Russian and Interferential Stim.
Generators of Therapeutic Current

- Transcutaneous electrical stimulators = ALL therapeutic generators.
- Transcutaneous Electrical Nerve Stimulators (TENS): stimulate peripheral nerves.
- Neuromuscular electrical stimulator: specifically stimulates muscular tissue directly.
 - Needed when peripheral nerves are not functioning.
 - Most common example: MENS

WAVEFORMS

- Graphic representation of electrical current
- Displayed on an oscilloscope
- Will show the shape, direction, amplitude, duration, and pulse frequency.

Anatomy of a Waveform

- Pulse: individual waveform that can contain one or two phases.
- Phase: portion of a pulse that rises above or below the baseline for a period of time.
- Amplitude: intensity of the current.
- Intraperiod interval: short period of time when current is not flowing
- Intrapulse interval: interruption of a single pulse
- Rate of Rise: how quickly a pulse reaches maximum amplitude
- Rate of Decay: how quickly a pulse goes from maximum amplitude to 0.
- Pulse Duration: length of time a current is flowing in one cycle.

Anatomy of a Waveform (con’t)

- Pulse period: combined time of pulse duration and interpulse interval.
- Frequency: Number of pulses per second.
 - Less than 50pps: twitch reaction
 - More than 50pps: tetany occurs
- Ramping: current amplitude gradually increases to a preset maximum.
- Waveform shapes:
 - Sinusoidal
 - Rectangular
 - Spiked

Accommodation

- When a fiber has been subjected to a constant level of depolarization
- Becomes inexcitable
- Need to change rate of rise and decay to help decrease this phenomenon.

Asymmetric Waveforms

- Faradic Current
 - Seldom used in modern equipment
 - Did not have very good physiological effects because amplitude of the wave in the negative component could not produce a physiological response
 - Can be used in a monophasic form when the amplitude rises gradually and falls abruptly to stimulate denervated muscle.
 - Allows for accommodation of normal muscle.
Current Modulation

- Modulation: alteration in the magnitude or any variation of pulses.
- Continuous
- Interrupted
- Burst
- Ramped

Current Modulation (con't)

- Continuous Modulation:
 - Flow stays the same for several seconds or minutes.
 - Usually direct current
 - Creates alkaline or acidic environment called medical galvanism.
 - Ex. Iontophoresis

- Interrupted Modulation:
 - Current flows for a period and is off for a period.
 - Can be monophasic or biphasic
 - On time: between 1 and 60 sec.
 - Off time: between 1 and 120 sec

Current Modulation (Con't)

- Burst Modulation
 - Pulsed current flows for a short duration and then is off for a short period.
 - May be used with monophasic or biphasic current.
 - Ex. Interferential

- Ramping Modulation
 - Amplitudes will gradually rise to a preset max and ramp down in intensity.
 - Up time is usually 1/3 of on time.
 - Down time is not on all machines
 - On and off times: between 1 and 10 sec.

Current Flow through tissues

- Current chooses the path of least resistance.
- Need to have good conducting medium
- Tissues with highest water content are the best conductors

Skin
- Various water content
- Considered an insulator
- Need to prepare skin before applying stimulation
- How?

Current Flow through tissues

- Blood
 - Composed largely of water and ions
 - Best conductor of biological tissue
- Muscle
 - 75% water
 - Depends on movement of ions for contraction.
 - Longitudinal is best
- Muscle Tendon
 - Contain little water
 - Poor conductors
- Fat
 - 14% water
 - Poor conductor
- Peripheral Nerves
 - Conductivity is six times that of muscle
 - But, surrounded by sheaths that are poor conductors
- Bone
 - 5% water
 - Poorest conductor of biological tissues.

Physiological Response to Electrical Current

- Thermal
 - Rise in body temperatures in conducting tissues
 - Higher resistance causes higher rise in temperature
 - Those currents used to stimulate nerve and muscular tissue have little thermal effects due to low average current flow
 - Diathermies have a high-frequency and produce increase in tissue temp.

- Physiological
 - Muscle contractions or modification of pain through effects on nervous tissues.
 - At positive pole: acidic reaction causes coagulation of proteins and hardening of tissues
 - At negative pole: alkaline reaction causes liquifying of proteins and softening or tissues
Safety

- Large concern for professionals
- Power coming out of wall is 220 or 120 Volts with 60 Hz
- Can cause significant physiological damage.
- Microshock: shock from an electrical current that cannot be felt (less than 1 mA)
- Macroshock: shock from an electrical current that is greater than 1 mA

Safety (Con’t)

- Ground Fault Interrupters
 - Required by National electrical code
 - Mainly for whirlpools and tubs.
 - If there is a leakage in current flow the circuit breaker will automatically interrupt the flow in as little as 1/40th of a second.

Be sure to have electrical outlets evaluated by an electrician
- Have modalities calibrated yearly