Iontophoresis

Chapter 6

History

- Developed in 1903 by LeDuc
- Originally called Ion Transfer
- Uses electrical force to drive chemicals across a membrane
- Popularity has risen and fallen over time with the circulation of different research.

Iontophoresis vs. Phonophoresis

- Iontophoresis
 - Uses Direct Electrical current to introduce specific ions into the target tissues.
- Phonophoresis
 - Uses Acoustic Energy, via Ultrasound, to drive whole molecules of a specific medication into the target tissues.
How does Iontophoresis work?

- An electrolyte solution is chosen according to therapeutic goals.
- Opposite ions attract, like ions repel.
- Ions are introduced into the body via the active electrode which has the same charge as the solution you are using.
- Once inside the tissue, ions are picked up by the body’s own ions and are transported toward the dispersive electrode.

How does Iontophoresis Work?

- Allows for the flow of current between active and dispersive electrodes.
- Ex. Dexamethasone has a negative charge. Which will be the active electrode and which will be the dispersive electrode?

Ion Movement through Tissues

- Forces needed to move ions through tissues are determined by:
 - Strength of the electrical field (current density)
 - Electrical Impedence
Ion Movement through Tissues

■ Current Density
 – Difference between active and dispersive allows migration of ions
 – Can be altered by changing the size the active electrode.
 • Increase in size will decrease current density.
 • Negative electrode should be larger than positive because accumulation of positive ions can cause an acidic reaction in the tissues.
 – Can be altered by increasing intensity.

Ion Movement through Tissues

■ Electrical Impedance
 – Skin and fat: Poor conductors
 – Sweat glands: Decreases impedance
 – Saturation of ion and increase in blood flow decrease impedance

Ion Movement through Tissues

■ Ion Transfer
 – Determined by current density, current intensity at the active electrode, duration of the current, and concentration of solution.
Ion Transfer

- **Current Density**: Directly proportional to ion absorption.
- **Current Intensity**: can increase if the intensity is increased, but likelihood of burns goes up.
- **Current Flow**: will increase if the length of time the current is flowing is longer, but will decrease skin impedance and the likelihood of burns will go up.
- **Concentration of solution**: concentrations greater than 1 to 2 percent are no more effective than those that are lower.

Current type and Generators

- **Current type**:
 - Most commonly utilizes Direct Current.
 - New research shows that Alternating current can be used to decrease burns.
 - The interrupted current of High Volt and IF are too short to provide therapeutic effects.
- **Generators**
 - Should produce direct current at a continuous rate
 - Should automatically shut down if impedance decreases to a predetermined level.
 - Current intensity control that goes between 1 and 5 mA.
 - Adjustable timer
 - Clearly marked polarity terminals.

Current Intensity

- Low amperage works best.
- Recommended amplitudes range between 3 and 5 mA
- Always increase and decrease intensity slowly
Treatment Duration

- Keep Between 10 and 20 minutes
 - 15 minutes is an average treatment time.
- Check every 3-5 minutes for visual signs of burns
- Medicated electrode can be left in place for 12-24 hours.

Dosage of Medication

- Delivered in mA-minutes
 - mA-minute = current x treatment time
- Ex. Typical treatment: 4.0 mA x 10 minutes = 40 mA-minutes.
- Can vary from 0-80 mA-minutes depending on medication used.

Electrodes

- Active
 - Commonly made from tin, copper, lead, aluminum, or platinum.
 - Backed by rubber
 - Covered by a piece of gauze or sponge which serves as the chamber where the medication is applied
 - Each pad will tell you how many cc’s of the solution it can hold.

- Dispersal
 - Made from a gel substance, water, or another conducting material
 - Generally close to the same size as the active electrode.
Electrode Placement

- **Monopolar Technique**
 - Active electrode is placed over the injured site.
 - Dispersal electrode is placed at least the diameter of the active electrode away.
 - Some suggest at least 18 inches apart.

Ion Selection

- Generally chosen or prescribed by physician.
- Need working knowledge of what specific ions do.
- Must be fat and water soluble
 - Water soluble to stay ionized in solution
 - Fat soluble to permeate through the tissues
- Most common one used in training room is Dexamethasone.

Indications

- Inflammation
- Analgesia
- Muscle Spasm
- Ischemia
- Edema
- Calcium Deposits
- Scar Tissue
- Hyperhydrosis
- Fungi
- Open Skin Lesions
- Herpes
- Allergic Rhinitis
- Gout
- Burns
- RSD
Precautions

- Since most medications are prescribed by a physician, pay close attention to notes left by the pharmacist
- Exact dosage of meds delivered to the body is unknown
- Erythema under the electrode is common after the treatment
- A treatment dose that is too strong (by amperage or duration can cause burns)
- Do not reuse electrodes due to contamination

Contraindications

- Skin sensitivity
- Aspirin Allergy (Salicylates)
- Gastritis
- Asthma
- Metal Sensitivity
- Seafood Allergy (Iodine)

Burns

- Minimization of Burns
 - Decrease Current density
 - Larger Negative electrode
 - Increase space between active and dispersal electrode
 - Proper electrode contact

- Treatment of Burns
 - Antibiotics and sterile Gauze dressing.
Why use Iontophoresis??

- Advantages
 - Transdermal delivery of medication
 - Allows localized concentration of medication
 - Bypasses metabolism via the Liver
 - Less traumatic than injected medications

- Disadvantages
 - Unreliable results
 - Unable to know how much medication is delivered to the area
 - Anxiety of stim. Units
 - Possibility of burns

Questions