Chapter 7
Biofeedback

Objectives

- Define biofeedback and identify its use in the clinical setting
- Discuss the process by which electrical activity generated by a muscle is processed and converted to meaningful information by a biofeedback device
- Outline the equipment set-up and clinical applications for biofeedback

Biofeedback Defined

- Info provided by some measurement instrument about a specific biologic function
- Provides patients with feedback that enables them to make adjustments in movement or function
Clinical Application

- Useful in helping patients regain function of a muscle
 - Muscle re-education
 - overcome VMO inhibition
 - isolate and train scapular stabilizers
 - Muscle relaxation
 - Upper trapezius
 - Muscle guarding secondary to injury

Biofeedback Instrumentation

- Peripheral skin temperature
 - Vasoconstriction & vasodilation
- Finger phototransmission
 - Vasoconstriction & vasodilation
- Skin conductance activity
 - Sweat gland activity
 - Lie detector testing
- Electromyographic (EMG) activity
- Electrical activity within a muscle
- Mirror
 - Visual feedback for movement patterns

Electromyographic (EMG) Feedback

- Measures or monitors the electrical activity associated with muscle contraction
 - surface electrodes
 - indwelling electrodes
- Does NOT measure the force produced by the contraction
Electromyographic (EMG) Feedback

- Processing the signal
 - Raw signal is recorded as an alternating voltage wave

Electromyographic (EMG) Feedback

- Processing the signal
 - Raw signal is then rectified (negative reflections are flipped to positive pole)

Electromyographic (EMG) Feedback

- Rectified signal is then smoothed by eliminating all of the peaks and valleys
- Smoothed signal is then integrated by measuring the area under the curve
Electromyographic (EMG) Feedback

- Records the electrical activity of the muscle and then transforms it into meaningful feedback data

Instrumentation

- Three electrodes placed over the muscle in line with the direction of muscle fibers
 - Two active electrodes
 - One reference or ground electrode (usually placed between the two active electrodes)
 - Electrodes should be placed close together to eliminate "noise"

Set-up

- Clean electrode site with alcohol prep pad
- Apply conductive gel to electrodes
- Place electrodes in belly of muscle in line with the direction of muscle fibers
- Plug the lead wires into the biofeedback unit
- Turn the biofeedback unit ON
Electromyographic (EMG) Feedback

Set-up
- Set the OUTPUT to the desired mode of feedback
 - Visual
 - strip of colored lights
 - Meter level
 - Auditory
 - beeps
 - clicks
 - Both

Electromyographic (EMG) Feedback

Set-up
- Set the SENSITIVITY threshold to the desired level of feedback
 - Increased sensitivity requires less work from the patient
 - Decreased sensitivity requires more work from the patient

Electromyographic (EMG) Feedback

Set-up
- Set the SENSITIVITY threshold (µV) to the desired level of feedback
 - High sensitivity to promote relaxation
 - Low sensitivity to promote reeducation
Electromyographic (EMG) Feedback

Set-up
- Set the SENSITIVITY threshold to the desired level of feedback
 - Scale reading
 - x1 - .05-10µV (highest sensitivity)
 - x10 - 5-100µV
 - x100 - 50-1000µV (lowest sensitivity)

Instruct the patient on what they are supposed to do
- Contract muscle to produce a certain peak level
- Hold for 6-10 seconds
- Relax muscle to eliminate feedback

Treatment time
- 5-10 minutes

Indications
- To facilitate muscle contraction
- To regain neuromuscular control
- To decrease muscle spasm
- To promote systemic relaxation
Electromyographic (EMG) Feedback

- Cautions
 - Do not exceed prescribe ROM
 - Avoid undue muscle tension that may affect grafts or other tissue restrictions

Electromyographic (EMG) Feedback

- Contraindications
 - Conditions in which muscular contractions would insult the healing tissues

Biofeedback with Mirror
What questions do you have?