2.1) a) \(T(n) = g(n)x[n] \)

* Stable: Let \(|x[n]| \leq M\) then \(|T(n)| \leq |g(n)|M\).

So, it is stable if \(|g(n)|\) is bounded.

* Causal: \(y_1[n] = g(n)x_1[n] \) and \(y_2[n] = g(n)x_2[n] \),

so if \(x_1[n] = x_2[n] \) for all \(n < n_0 \), then \(y_1[n] = y_2[n] \)

for all \(n < n_0 \), and the system is causal.

* Linear: \(T(\alpha x_1[n] + \beta x_2[n]) = g(n)(\alpha x_1[n] + \beta x_2[n]) \)

\[= \alpha g(n)x_1[n] + \beta g(n)x_2[n] \]

\[= \alpha T(x_1[n]) + \beta T(x_2[n]) \]

So this is linear.

* Not Time-Invariant:

\[T(x[n-n_0]) = g(n)x[n-n_0] \]

\[\neq y[n-n_0] = g(n-n_0)x[n-n_0] \]

which is not TI.

* Memoryless: \(y[n] = T(x[n]) \) depends only on the nth value of \(x \), so it is memoryless.
b) \[T(x[n]) = \sum_{k=n_0}^{n} x[k] \]

* not stable: \[|x[n]| \leq M \rightarrow |T(x[n])| \leq \sum_{k=n_0}^{n} |x[k]| \leq 1^n - n_0 \cdot M. \]

As \(n \to \infty \), \(t \to \infty \), so not stable.

* not causal: \(T(x[n]) \) depends on the future values of \(x[n] \) when \(n < n_0 \), so this is not causal.

* linear:

\[
T(a x_1(n) + b x_2(n)) = \sum_{k=n_0}^{n} a x_1[k] + b x_2[k]
\]

\[
= a \sum_{k=n_0}^{n} x_1[k] + b \sum_{k=n_0}^{n} x_2[k]
\]

\[
= a T(x_1(n)) + b T(x_2(n))
\]

The system is linear.

* not TI:

\[
T(x[n-n_0]) = \sum_{k=n_0}^{n} x[k-n_0] = \sum_{k=0}^{n-n_0} x[k] \neq x[n-n_0] = \sum_{k=n_0}^{n} x[k]
\]

The system is not TI.

* not memoryless: values of \(y[n] \) depend on past values for \(n < n_0 \).

So this is not memoryless.

c) \[T(x[n]) = \sum_{k=n-n_0}^{n} x[k] \]

\[
|T(x[n])| \leq \sum_{k=n-n_0}^{n} |x[k]| \leq 2^n \cdot |x[n]| \leq 12^n \cdot 1 \cdot M \text{ for } |x[n]| \leq M,
\]

* bounded: \(|T(x[n])| \leq \sum_{k=n-n_0}^{n} |x[k]| \leq 2^n \cdot |x[n]| \leq 12^n \cdot 1 \cdot M \)

So it is bounded.
* Not causal: $T(x(n))$ depends on future values of $x(n)$, so it is not causal.

* Linear:

$$T(a_1 x_1(n) + b_2 x_2(n)) = \sum_{k=0}^{\infty} a_1 x_1(k) + b_2 x_2(k)$$

$$= a_1 \sum_{k=n-n_0}^{\infty} x_1(k) + b_2 \sum_{k=n-n_0}^{\infty} x_2(k) = a_1 T(x_1(n)) + b_2 T(x_2(n))$$

This is linear.

* T2:

$$T(x(n-n_0)) = \sum_{k=n-n_0}^{0} x(k) = \sum_{k=0}^{n-1} x(k) = y(n-n_0)$$

This is T2.

* Not memoryless: the values of $y(n)$ depend on 2 previous values of $x(n)$, not memoryless.

4) $T(x(n)) = x(n-n_0)$

* Stable: $|T(x(n))| = |x(n-n_0)| \leq M$ and $|x(n)| \leq M$, so stable.

* Causality: If $n_0 > 0$, this is causal, otherwise it is not causal.

* Linear:

$$T(a_1 x_1(n) + b_2 x_2(n)) = a_1 x_1(n-n_0) + b_2 x_2(n-n_0)$$

$$= a_1 T(x_1(n)) + b_2 T(x_2(n))$$

This is linear.

* T2: $T(x(n-n_0)) = x(n-n_0-n_0) = y(n-n_0)$, this is T2.

* Not memoryless: when $n_0 = 0$, this is not memoryless.
e) \(T(x[n]) = e^{x[n]} \)
- Stable: \(|x[n]| \leq M, \quad |T(x[n])| = |e^{x[n]}| \leq e^{x[n]} \leq e^M \); this is stable.
- Causal: It doesn't use future values of \(x[n] \), so it is causal.
- Not linear: \(T(ax_1[n] + bx_2[n]) = e^{ax_1[n] + bx_2[n]} \)
 \(= e^{ax_1[n]} \cdot e^{bx_2[n]} \)
 \(= e^{ax_1[n]} \cdot e^{bT(x_2[n])} \)
 \(\neq aT(x_1[n]) + bT(x_2[n]) \)
 This is not linear.

f) \(T(x[n]) = ax[n] + b \)
- Stable: \(|T(x[n])| = |ax[n] + b| \leq a|\max| + |b| \), which is stable for finite \(a \) and \(b \).
- Causal: This doesn't use future values of \(x[n] \), so it is causal.
- Not linear:
 \(T(cx_1[n] + dx_2[n]) = acx_1[n] + adx_2[n] + b \)
 \(\neq cT(x_1[n]) + dT(x_2[n]) \)
 This is not linear.
8) \(T(x(n)) = x[-n] \)

* Stable: \(|T(x(n))| \leq |x[-n]| \leq M \), so it is stable.

* Not Causal: for \(n < 0 \), it depends on the future value of \(x[n] \), so it is not causal.

* Linear:
 \[
 T(ax_1(n) + bx_2(n)) = ax_1[-n] + bx_2[-n] = aT(x_1(n)) + bT(x_2(n))
 \]
 This is linear.

* Not TI:
 \[
 T(x(n-n_0)) = x[-n-n_0] \neq y(n-n_0) = x[-n+n_0]
 \]
 This is not TI.

* Not memoryless: for \(n \neq 0 \), it depends on a value of \(x \) other than the \(n \)th value, so it is not memoryless.

b) \(T(x(n)) = x(n) + u(n+1) \)

* Stable: \(|T(x(n))| \leq M + 3 \) for \(n \geq -1 \) and \(|T(x(n)| \leq M \) for \(n < -1 \), so it is stable.

* Causal: since it doesn't use future values of \(x[n] \), it is Causal.

* Not linear: \[
 T(ax_1(n) + bx_2(n)) = ax_1(n) + bx_2(n) + 3u(n+1)
 \]
 \[
 \neq aT(x_1(n)) + bT(x_2(n))
 \]
 This is not linear.
* not T2:

\[T[n(n-n_0)] = x[n-n_0] + 3u[n+1] \]
\[= y[n-n_0] \]
\[= x[n-n_0] + 3u[n-n_0+1] \]

this is not T2.

* memoryless: \(y[n] \) depends on the \(n \)th value of \(x \) only,
so this is memoryless.

2.2) for an LTI system, the output is obtained from the convolution of the input with the impulse response of the system.

\[y[n] = \sum_{k=-\infty}^{\infty} h[k] x[n-k] \]

a) Since \(h[k] \neq 0 \), for \((n_2 \leq n \leq N_1) \),

\[y[n] = \sum_{k=N_0}^{N_1} h[k] x[n-k] \]

the input, \(x[n] \neq 0 \), for \((n_2 \leq n \leq N_3) \),

\[x[n-k] \neq 0 \), for \(N_2 \leq (n-k) \leq N_3 \).

Note that the minimum value of \((n-k)\) is \(N_2\).

Thus, the lower bound on \(n \), which occurs for \(k = N_0 \) is

\[N_4 = N_0 + N_2 \]

using a similar argument,

\[N_5 = N_1 + N_3 \].
therefore the output is nonzero for
\[(n_0 + n_2) \leq n \leq (n_1 + n_3)\].

b) If \(x(n) \neq 0\), for some \(n_0 \leq n \leq (n_0 + n - 1)\), and \(h(n) \neq 0\),
for some \(n_1 \leq n \leq (n_1 + m - 1)\), the results of part (a)
implies that the output is nonzero for
\[(n_0 + n_1) \leq n \leq (n_0 + n_1 + m + n - 2)\]
so the output sequence is \(m + n - 1\) samples long.

8.3) We define the step response to a system whose
impulse response is
\[h(n) = a^{-n} u[-n], \text{ for } 0 < a < 1\]
the convolution sum:
\[y(n) = \sum_{k=-\infty}^{\infty} h(k) \times u[n-k]\]
the step response results when the input is the
unit step:
\[x(n) = u[n] = \begin{cases} 0, & \text{if } n < 0 \\ 1, & \text{if } n \geq 0 \end{cases}\]
Substitution into the convolution sum yields
\[y(n) = \sum_{k=-\infty}^{\infty} a^{-k} u[-k] u[n-k]\]
\[y(n) = \sum_{k=-\infty}^{\infty} a^k = \sum_{k=0}^{\infty} a^k = \frac{a^n}{1-a}. \]

For \(n \geq 0 \)

\[y[n] = \sum_{k=-\infty}^{0} a^{-k} = \sum_{k=0}^{\infty} a^k = \frac{1}{1-a}. \]

2.4) the difference equation

\[y[n] - \frac{3}{4} y[n-1] + \frac{1}{8} y[n-2] = 2 \delta[n-1]. \]

To solve, we take the Fourier transform of both sides

\[Y(e^{j\omega}) - \frac{3}{4} Y(e^{j\omega}) e^{-j\omega} + \frac{1}{8} Y(e^{j\omega}) e^{-2j\omega} = 2 X(e^{j\omega}) e^{-j\omega}. \]

The system function is given by

\[H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{8 e^{j\omega}}{1 - \frac{3}{4} e^{-j\omega} + \frac{1}{8} e^{-2j\omega}}. \]

The impulse response \(h[n] \) is the inverse Fourier transform of \(H(e^{j\omega}) \)

\[H(e^{j\omega}) = -\frac{8}{1 + \frac{1}{4} e^{-j\omega} + \frac{8}{1 - \frac{1}{2} e^{-j\omega}}}. \]

Thus,

\[h(n) = -8 \left(\frac{1}{4} \right)^n u(n) + 8 \left(\frac{1}{2} \right)^n u(n) \]
2.5) a) the homogeneous difference equation:

\[y(n) - 5y(n-1) + 6y(n-2) = 0 \]

- taking the \(Z \)-transform

\[
1 - 5z^{-1} + 6z^{-2} = 0.
\]

\[
(1 - 2z^{-1})(1 - 3z^{-1}) = 0.
\]

The homogeneous solution is of the form

\[y_h(n) = A_1(2)^n + A_2(3)^n \]

b) we take \(Z \)-transform of both sides:

\[y(n)(1 - 5z^{-1} + 6z^{-2}) = 2z^{-1} \cdot x(n) \]

Thus, the system function is

\[H(z) = \frac{y(n)}{x(n)} = \frac{2z^{-1}}{1 - 5z^{-1} + 6z^{-2}} \]

\[= -\frac{2}{1 - 2z^{-1}} + \frac{2}{1 - 3z^{-1}} \]

Where the ROC is outside the outermost pole, because the system is causal. Hence the ROC is \(|z| > 3 \). Taking the inverse \(Z \)-transform, the impulse response is

\[h(n) = -2(2)^n u(n) + 2(3)^n u(n) \]

c) let \(x(n) = u(n) \) (unit step), then

\[x(t) = \frac{1}{1 - z^{-1}} \]
\[Y(t) = x(t) + h(t) \]

\[
= \frac{8t^{-1}}{(1-2^{-1}) (1-2^{-1}) (1-3^{-1})}
\]

Partial fraction expansion yields:

\[
Y(t) = \frac{1}{1-2^{-1}} - \frac{4}{1-2^{-1}} + \frac{3}{1-3^{-1}}.
\]

The inverse transform yields:

\[y(n) = u(n) - 4(2)^n u(n) + 3(3)^n u(n) \]

2.12) the difference equation

\[y(n) = n y(n-1) + x(n) \]

Since the system is causal and satisfies initial-rest condition, we may recursively find the response to any input.

a) Suppose \(x[n] = \delta[n] \)

\[y(n) = 0, \quad \text{for} \ n < 0 \]

\[y[0] = 1 \]
\[y[1] = 1 \]
\[y[2] = 2 \]
\[y[3] = 6 \]
\[y[4] = 24 \]

\[y[n] = h[n] = n! u[n] \]
(b) To determine if the system is linear, consider the input:
\[x[n] = aB[n] + bB[n] \]
performing the recursion,
\[y[n] = 0, \text{ for } n < 0. \]
\[y[0] = a + b \]
\[y[1] = a + b \]
\[y[2] = 2(a + b) \]
\[y[3] = 6(a + b) \]
\[y[4] = 24(a + b) \]

Because the output of the superposition of two input signals is equivalent to the superposition of individual outputs, the system is linear.

e) To determine if the system is time-invariant, consider the input:
\[x[n] = B[n-1] \]
the recursion yields, \[y[n] = 0, \text{ for } n < 0. \]
\[y[0] = 0 \]
\[y[1] = 1 \]
\[y[2] = 2 \]
\[y[3] = 6 \]
\[y[4] = 24 \]

Using \(h[n] \) from part (a),
\[h[n-1] = (n-1)! \ u[n-1] \neq y[n] \ | x[n] = s[n-1]| \]
2.32) \[y(n) = \sum_{k = -\infty}^{\infty} h(k) x[n-k] \]

Consider \[y(n+N) = \sum_{k = -\infty}^{\infty} h(k) x[n+N-k] \]

But \[x[n+N-k] = x[n-k] \ (x(n) \ \text{is periodic}) \]

\[\therefore y(n+N) = \sum_{k = -\infty}^{\infty} h(k) x[n-k] = y(n) \]

\[\Rightarrow y(n) \ \text{is periodic}. \]

8.89) \[h(n) = u(n) - 3u(n-4) + 2u(n-6) \]

a) \[x(n) = u(n) \]

\[y_1(n) = h(n) * x(n) \]

\[= \left\{ u(n) - 3u(n-4) + 2u(n-6) \right\} * u(n) \]

\[= y(n+1) - 3y(n-3) + 2y(n-5) \]
b) \(x(n) = u(n-4) \)

\[
y_d(n) = \left\{ u(n) - 3u(n-4) + 2u(n-6) \right\} * u(n-4)
\]

\[
y(n) = x(n-3) - 3x(n-2) + 2x(n-9)
\]

\[
y(n)
\]

\[
\begin{array}{cccccccc}
\cdot & \cdot \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
\]

\[
y(n)
\]

\[
\begin{array}{cccccccc}
\cdot & \cdot \\
-1 & -2 & -3 & -4 & -5 & -6 & -7 & -8
\end{array}
\]

c) \(x(n) = \left\{ u(n) - u(n-4) \right\} \)

\[
y(n) = \left\{ u(n) - 3u(n-4) + 2u(n-6) \right\} * \left\{ u(n) - u(n-4) \right\}
\]

\[
y(n) = x(n+1) - 3x(n-3) + 2x(n-5) - x(n-3) + 3x(n-7) - 2x(n-9)
\]

\[
y(n+1) - 4x(n-3) + 2x(n-5) + 3x(n-7) - 2x(n-9)
\]

\[
y_1(n) - y_2(n)
\]

\[
y(n)
\]

\[
\begin{array}{cccccccc}
\cdot & \cdot \\
-1 & -2 & -3 & -4 & -5 & -6 & -7 & -8
\end{array}
\]
2.30) a) \(h_1(n) = u(n) - u(n-4) \)

\(x(n) = (-1)^n u(n) \).

\[h_2(n) = \sum_{k=0}^{n} (-1)^{n-k} u(k) u(n-k) - \sum_{k=4}^{n} (-1)^{n-k} u(k-4) u(n-k) \]

\[= (-1)^n \sum_{k=0}^{n} (-1)^k - (-1)^n \sum_{k=4}^{n} (-1)^k \]

\[= 1 - (-1)^{n+1} - (-1)^n \cdot u(n) - 1 - (-1)^{n-3} (-1)^n \cdot u(n-4) \]

\[= (-1)^n \left(1 - (-1)^{n+1} \right) \left[u(n) - u(n-4) \right] \]

\(0 \leq n \leq 3 \).

b) \(h_1(n) = u(n) - u(n-4) \)

\(h_2(n) = u(n+3) - u(n-1) \).

\[h(n) = h_1(n) + h_2(n) = \{ u(n) - u(n-4) \} + \{ u(n+3) - u(n-1) \} \]

\[= \tau(n+4) - \tau(n) - \tau(n) + \tau(n-4) \]

\[= \tau(n+4) - 2\tau(n) + \tau(n-4) \]
c) \(x(n) = 2 \delta(n) + 4 \delta(n-4) - 2 \delta(n-12) \)

\[h_1(n) = x(n) - u(n-4) \]

\[w(n) = x(n) * h_1(n) = 2 u(n) + 4 u(n-4) - 2 u(n-12) \]

\[- 2 u(n-4) - 4 u(n-8) + 2 u(n-16) \]

\[= 2 u(n) + 2 u(n-4) - 4 u(n-8) - 2 u(n-12) + 2 u(n-16) \]

d) \(y(n) = x(n) * h(n) = \int [2 \delta(n) + 4 \delta(n-4) - 2 \delta(n-12)] h(n) \)

\[= 2 h(n) + 4 h(n-4) - 2 h(n-12) \]
8.31)

a) \[\sum_{k=-\infty}^{\infty} |h(k)| < \infty \]

\[\sum_{k=-\infty}^{\infty} |a^k w(k)| = \sum_{k=0}^{\infty} a^k = \frac{1}{1-|a|} \]

Stable if \(|a| < 1\)

b) \[y(n) = ay(n-1) + x(n) - a^n x(n-N) \]

Consider \(x(n) = g(n)\)

\[h_1(n) = ah_1(n-1) + g(n) \]

\[h_2(n) = ah_2(n-1) - a^n g(n-N) \]

\[h(n) = h_1(n) + h_2(n) \]

\[= h_1(n) - a^n h_1(n-N) \]
\[h_1(t) = a^2 t h_1(t) + 1. \]
\[h_1(t) = \begin{cases} 1 & \text{if } 1 - a^2 t \geq 1, \\ \frac{1}{1-a^2 t} & \text{if } 1 - a^2 t < 1. \end{cases} \]
\[h_1(t) = \frac{1}{1-a^2 t}, \quad h_1(n) = a^2 u(n). \]
\[h(n) = a^n u(n) - \frac{a^n a^n - a^n u(n-N)}{a^n}. \]
\[h(n) = a^n \{ u(n) - u(n-N) \}, \quad 0 \leq n \leq N-1. \]

c) FIR system:

d) for all real values of \(a \), for all values for which we can evaluate \(a \).

2.39) The ideal delay system:
\[y[n] = T \{ x[n] \} = x[n-n_0] \]
using the definition of linearity:
\[T \{ a x_1(n) + b x_2(n) \} = a y_1(n-n_0) + b y_2(n-n_0) \]
\[= a y_1(n) + b y_2(n) \]
So, the ideal delay system is linear.

the moving average system:
\[y[n] = T x[n] = \frac{1}{M_1+M_2+1} \sum_{k=-M_1}^{M_2} x(n-k) \]
By linearity:
\[T \{a x_1(n) + b x_2(n)\} = \frac{1}{M_1 + M_2 + 1} \sum_{k=-M_1}^{M_2} a x_1(n) + \frac{1}{M_1 + M_2 + 1} \sum_{k=-M_1}^{M_2} b x_2(n) \]

= \(a y_1(n) + b y_2(n)\)

the moving average is linear.

2.40 \(x(n)\) is periodic with period \(N\) if \(x(n) = x(n+N)\) for some integer \(N\).

a) \(x(n)\) is periodic with period 5:

\[e^{j \left(\frac{2\pi}{5} n \right)} = e^{j \left(\frac{2\pi}{5} (n+N) \right)} = e^{j \left(\frac{2\pi}{5} n + 2\pi k \right)} \]

\[2\pi k = \frac{2\pi}{5} N, \text{ for integer } k, N. \]

making \(k=1\) and \(N=5\) shows that \(x(n)\) has period 5.

b) \(x(n)\) is periodic with period 38. Since the \(\sin\) function has period of \(2\pi\):

\[x(n+38) = \sin \left(\pi (n+38)/19 \right) = \sin \left(\pi n/19 + 2\pi \right) = x(n) \]

c) this is not periodic because the linear term \(n\) is not periodic.

d) this is again not periodic. \(e^{j\omega}\) is periodic over period \(2\pi\), so we have to find \(k, N\) from page 18
that
\[x[n+N] = e^{i(n+N)} = e^{i(n+2\pi k)} \]

since we make \(k\) and \(N\) integers at the same time, \(x[n]\) is not periodic.

2.51) a) for \(x_1[n] = 8[n]\)

\[y_1[0] = 1 \]
\[y_1[1] = ay[0] = a. \]

For \(x_2[n] = 8[n-1]\)

\[y_2[0] = 1 \]
\[y_2[1] = ay[0] + x_2[1] = a + 1 = y_1[0] \]

Even though \(x_2[n] = x_1[n-1]\), \(y_2[n] \neq y_2[n-1]\). Hence the system is not time invariant.

b) A linear system has the property that

\[T_f \{ ax_1[n] + bx_2[n] \} = aT_f \{ x_1[n] \} + bT_f \{ x_2[n] \} \]

Hence, if the input is doubled, the output must also double at each value of \(n\). Because \(y[0] = 1\), always, the system is not linear.

c) let \(x_3 = dx_1(n) + bx_2(n)\)

For \(n \geq 0\):

\[y_3[n] = y_3[n] + ay_3[n-1] \]
\[= dx_1(n) + bx_2(n) + a(y_3[n-1] + y_3[n-2]) \]
\[y_3(n) = \sum_{k=0}^{n-1} a^k x_1(n-k) + \beta \sum_{k=0}^{n-1} a^k x_2(n-k) \]

\[= \left(\eta(n) * x_1(n) \right) + \beta \left(\eta(n) * x_2(n) \right) \]

\[= \eta y_1(n) + \beta \eta y_2(n) \]

For \(n < 0 \):

\[y_3(n) = \alpha^r (y_3(n+1) - x_3(n)) \]

\[= -\alpha \sum_{k=-1}^{n} a^k x_1(n-k) - \beta \sum_{k=-1}^{n} a^k x_2(n-k) \]

\[= \alpha y_1(n) + \beta y_2(n) \]

For \(n = 0 \):

\[y_3(0) = y_1(0) = y_2(0) = 0 \]

Conclude:

\[y_3(n) = \alpha y_1(n) + \beta y_2(n) \quad \text{for all } n. \]

Therefore, the system is linear, the system is still not time invariant.

Note that \(x_2(n) = - \sum_{k=0}^{K} x(n-k) \). Since the system is

\[LTI, \quad \text{we have} \]

\[y_2(n) = - \sum_{k=0}^{K} y(n-k) \]

Page 20.
b) By carrying out the convolution, we get:

\[h(n) = \begin{cases}
1 & n = 0, 2 \\
-2 & n = 1 \\
0 & \text{otherwise}
\end{cases} \]

1, 2, 1, 6, 9, 10, 12, 14, 13, 11, 8, 7, 5, 3, 14, 15