Program Assignment 1, EE5352

1. Using the histogram pseudocode given on the last 3 pages, construct a histogram function which inputs an array \(x \) of dimension \(N_x \) and a parameter \(N_y \), which is the number of desired histogram bins. The outputs are a histogram array \(y \) of dimension \(N_y \) and a second array \(z \) of dimension \(N_y \). After calculating a histogram, you can plot \(y \) versus \(z \).

2. Using a random number generator, generate 3000 pseudorandom numbers uniformly distributed between \(-0.5\) and \(0.5\), and store them in an array \(x \). \(N_x \) is therefore 3000. Plot the histogram produced if \(N_y = 20 \).

3. Generate and plot the histogram of array \(x_1 \) if \(x_1 \) is generated as follows.

 For \(i = 1 \) to 2999
 \(x_1(i) = x(i) + 2 \cdot x(i+1) \)
 end

4. Generate and plot the histogram of array \(x_2 \) if \(x_2 \) is generated as follows.

 For \(i = 1 \) to 2998
 \(x_2(i) = x(i) + 1.5 \cdot x(i+1) + 2 \cdot x(i+2) \)
 end
Pseudocode for the histogram function is given below.

Given:
Nx data samples in an array x
Ny, which is the desired number of bins in the histogram, and
Nsmt, which is related to the amount of histogram smoothing to use

Create arrays x, y, z with dimensions Nx, Ny, and Ny respectively

GET MAX AND MIN OF x

Xm=x(1)
Xn=Xm

For i = 2 to Nx
IF(x(i) > Xm) Xm=x(i)
IF(x(i) < Xn) Xn=x(i)
End

B=(Ny-.02)/(Xm-Xn)
A=1.01-B*Xn

For i = 1 to Ny
y(i)=0.
End

CALCULATE BIN ARRAY y

For i = 1 to Nx
II=A+B·x(i)
y(II)=y(II)+1.
End

SMOOTH y AND PUT IT IN z

Xv=1./(2·Nsmt+1.)
I1=Nsmt+1
I2=Ny-Nsmt
Np=2·Nsmt+1

For i= I1 to I2
S=0.
J1=i-Nsmt-1

...
For \(j = 1 \) to \(N_p \)
 \(J_1 = J_1 + 1 \)
 \(S = S + y(J_1) \)
End

\(z(i) = XV \cdot S \)
End

IF (Nsmt = 0) GO TO 9

\(N_p = 1.5 \cdot NSMT + .5 \)
\(XV = 1./N_p \)

For \(i = 1 \) to \(I_1 - 1 \)
 \(S = 0. \)
 For \(j = 1 \) to \(N_p \)
 \(S = S + y(i + j - 1) \)
 End

\(z(i) = XV \cdot S \)
End

For \(i = I_2 + 1 \) to \(N_y \)
 \(S = 0. \)
 For \(j = 1 \) to \(N_p \)
 \(S = S + Y(I - J + 1) \)
 End

\(z(i) = XV \cdot S \)
End

PUT SMOOTHED Z BACK INTO Y

9
For \(i = 1 \) to \(N_y \)
 \(y(i) = z(i) \)
End

PUT X-AXIS INTO Z

For \(i = 1 \) to \(N_y \)
 \(z(i) = (i - A) / B \)
End

NORMALIZE Y SO THAT ITS INTEGRAL IS 1.

\(G = 0. \)
For \(i = 1 \) to \(N_y \)
 \(G = G + y(i) \)
End

\(V = B / G \)
For $i=1$ to Ny
\[y(i)=V\cdot y(i) \]
End

The final histogram is $y(i)$ versus $z(i)$ for $i=1$ to Ny