1. Let $z_i(n) = a(i)s(n) + n_i(n)$ where $n_i(n)$ is white and $1 \leq i \leq N_{ch}$.
 The $a(i)$'s and $s(n)$'s are unknown.
 (a) Find the log likelihood function $\ln(f(z \mid a,s))$.
 (b) Setting the partial derivatives of the function to zero, find the MLE's for $s(m)$ and $a(j)$.
 (c) Find the diagonal elements of J_{MLE}.
 (d) Find the off diagonal elements of J_{MLE}. Assuming that these are zero, find bounds on the variances of the estimates of $s(m)$ and $a(j)$.

2. Let $z_i(n) = s(n) + n_i(n)$ where the number of channels is N_{ch}, and $n_i(n)$ is white, independent, with the ramp probability density function,
 $f_n(n) = \frac{2}{a}(1-n/a)[u(n)-u(n-a)]$, which varies from 0 to a.
 (a) Give the likelihood function for $s(n)$ (for one value of n).
 (b) Using the bounds on the noise, what bounds can we put on $s(n)$, in terms of $\min\{z_i(n)\}$ and $\max\{z_i(n)\}$?
 (c) Give a valid maximum likelihood estimate for $s(n)$.

3. Let $z(n) = A \cdot \cos(w_1n) + n(n)$ where $n(n)$ is WGN and $0 \leq n \leq N-1$. The unknowns are A and w_1.
 (a) Find approximations to the first partial derivatives of the log likelihood function with respect to A and w_1.
 (b) Describe how to estimate A and w_1 using ML.
 (c) Find a close approximation to J_{MLE} in closed form.
 (d) Find bounds on the error variances for estimates of A and w_1.
 (e) Repeat part (c) for the MAP estimation case, assuming that the parameters are statistically independent and have variances σ_A^2 and σ_w^2.

4. Let $z_i(n) = s(n) + n_i(n)$ where $n_i(n)$ is WGN and $1 \leq i \leq N_{ch}$. var$(n_i(n)) = \sigma^2$, so the noise variance is the same for each channel. The signal $s(n)$ is unknown, but it is known to be limited in bandwidth between w_1 and w_2 radians.
 (a) Find the LLF for $s(m)$.
 (b) Find the MLE of $s(m)$. Is the estimate efficient ?
 (c) Find the variance of the estimate.

5. Let $z(n) = s(a(n-d)) + n(n)$ where $n(n)$ is white and $s(n)$ is known.
 (a) Find the likelihood function $f(z \mid a,d)$.
 (b) Describe a method for estimating a and d.
Trig Identities

\[
\begin{align*}
\cos(A)\cos(B) &= \frac{1}{2} [\cos(A+B) + \cos(A-B)] \\
\sin(A)\sin(B) &= \frac{1}{2} [\cos(A-B) - \cos(A+B)] \\
\sin(A)\cos(B) &= \frac{1}{2} [\sin(A+B) + \sin(A-B)] \\
\sin(A+B) &= \sin(A)\cos(B) + \cos(A)\sin(B) \\
\cos(A+B) &= \cos(A)\cos(B) - \sin(A)\sin(B)
\end{align*}
\]

Approximations

\[
\begin{align*}
\sum_{n=0}^{N-1} n^k &\approx \int_0^N t^k \, dt \\
\sum_{n=0}^{N-1} n^k \cos^2(w\cdot n + \phi) &\approx \frac{1}{2} \int_0^N t^k \, dt \\
\sum_{n=0}^{N-1} n^k \cos(w\cdot n + \phi) &\approx 0
\end{align*}
\]

Special Operators

Given a function \(f(x) \) of \(x \), \(\text{argmax}\{ f(x) \} \) is that vector \(x \) that maximizes the function.

If \(X \) is a set of \(M \) numbers, the **max of \(X \) or \(\text{max}(X) \)** is simply the largest element in the set \(X \).

If \(X \) is a set of \(M \) numbers, the **min of \(X \) or \(\text{min}(X) \)** is simply the smallest element in the set \(X \).

If \(X \) is a set of \(M \) numbers for odd \(M \), the **median of \(X \) or \(\text{med}(X) \)** is found by ordering the elements of \(X \) from smallest to largest and picking the element in the middle of the ordered array. Thus, if \(s(k) \) denotes the \(k \)th smallest element of the set \(X \), \(\text{med}(X) = s((M+1)/2) \). If \(M \) is even, \(\text{med}(X) = 0.5 \cdot [s(M/2) + s(1+M/2)] \).
Determinant of a Matrix

The determinant of the matrix A (which has elements $a(i,j)$) can be written in terms of its cofactors as

$$|A| = \sum_{i=1}^{N} a(i,u)c_{i,u}$$

for any u between 1 and N. Then

$$\frac{\partial |A|}{\partial a(k,u)} = c_{ku},$$

Gaussian pdf

$$f_x(x) = \frac{1}{(2\pi)^{N/2} |C_x|^{1/2}} \exp\left(-\frac{1}{2} (x - m)^T C_x^{-1} (x - m)\right)$$