A Bound on the Eigenvalue Gaps: 10499

David Day

Stable URL: http://links.jstor.org/sici?sici=0002-9890%28199801%29105%3A1%3C71%3AAABOTEG%3E2.0.CO%3B2-4

The American Mathematical Monthly is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.
with $x_n = k$ is C_{m-k}^{n-1}. Thus
$$C_m^n = \sum_{k=-m}^{m} C_{m-k}^{n-1} = C_m^{n-1} + 2 \sum_{k=0}^{m-1} C_k^{n-1}. $$

This yields
$$C_m^n = C_m^{n-1} + C_{m-1}^{n-1} + \left(C_{m-1}^{n-1} + 2 \sum_{k=0}^{m-2} C_k^{n-1} \right) = C_m^{n-1} + C_{m-1}^{n-1} + C_m^{n-1}. $$

This recurrence is symmetric in m and n. Since $C_1^n = 2n + 1 = C_1^n$, the result follows by induction on $m + n$.

Solution II by Richard Holzsager, The American University, Washington, DC. Again we count the integer solutions to $\sum_{i=1}^{n} x_i \leq m$. Each list of k positive numbers with sum at most m yields $2^k \binom{n}{k}$ such solutions, as we choose the coordinates to receive these values in order and choose signs for the nonzero coordinates. Such a list is determined by choosing its k distinct partial sums from $\{1, \ldots, m\}$, so there are $\binom{m}{k}$ such lists. Thus
$$C_m^n = \sum_{k \geq 0} 2^k \binom{n}{k} \binom{m}{k}$$

which is symmetric in m and n.

Editorial comment. The National Security Agency Problems Group derived the generating function $(1 - x - y - xy)^{-1}$ for the numbers C_m^n. With $C_0^0 = 1$, this follows from the recurrence in Solution I. Robin J. Chapman and Bill Doran provided explicit bijections between the sets counted by C_m^n and C_m^m. The formula in Solution II is in S. Golomb and L. R. Welch, Perfect codes in the Lee metric and the packing of polyominoes, *SIAM J. Appl. Math.* 18 (1970) 302–317.

A Bound on the Eigenvalue Gaps

10499 [1996, 75]. Proposed by David Day, University of Kentucky, Lexington, KY, and Ren-Cang Li, University of California, Berkeley, CA. Let $M = T + \text{diag}(\alpha_i)$, where T is Hermitian Toeplitz and $\alpha_1, \ldots, \alpha_n$ are real numbers with $\alpha_1 < \cdots < \alpha_n$. Let $\lambda_1 \leq \cdots \leq \lambda_n$ denote the eigenvalues of M. Show that
$$\min_{1 \leq i \leq n-1} (\lambda_{i+1} - \lambda_i) \geq \min_{1 \leq i \leq n-1} (\alpha_{i+1} - \alpha_i).$$

Solution by the proposers. Let Δ denote the matrix obtained by deleting the last row and column from M, let B denote the matrix obtained by deleting the first row and column from M, and let $\delta_1 \leq \cdots \leq \delta_{n-1}$ and $\beta_1 \leq \cdots \leq \beta_{n-1}$ be the eigenvalues of Δ and B, respectively. The Cauchy Interlace Theorem yields $\lambda_i \leq \delta_i, \beta_i \leq \lambda_{i+1}$. Since $B - \Delta = \text{diag}(\alpha_{i+1} - \alpha_i) \geq \min_{1 \leq j \leq n-1} (\alpha_{j+1} - \alpha_j) I$, the Weyl Monotonicity Theorem yields $\lambda_{i+1} - \lambda_i \geq \beta_i - \delta_i \geq \min_{1 \leq j \leq n-1} (\alpha_{j+1} - \alpha_j)$. (Cited theorems appear in §10 of B. N. Parlett, *The Symmetric Eigenvalue Problem*, Prentice-Hall, 1980.)

Cycle Structure of a Special Permutation

10502 [1996, 171]. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY. Let n and p be positive integers satisfying $1 \leq p \leq n$. Consider the permutation $\pi = \begin{pmatrix} 1 & 2 & \cdots & n-p & n-p+1 & n-p+2 & n-p+3 & \cdots & n \\ p+1 & p+2 & \cdots & n & p & 1 & 2 & \cdots & p-1 \end{pmatrix}$.

Determine the cycle structure of π.

Solution by the National Security Agency Problems Group, Fort Meade, MD. Modify π by mapping $n - p + 1$ to a new element 0 and mapping 0 to p. This new permutation has the effect of adding p modulo $n + 1$. It thus has $d = \text{gcd}(n+1, p)$ cycles of equal length