This sheet accompanies the homework website for the course. Any page numbers or sections refer to the required text by Cox, Little and O’Shea, 4th Ed.

In the following questions, \mathbb{C} denotes the complex numbers, \mathbb{R} denotes the real numbers, \mathbb{Z} denotes the set of all integers, \mathbb{N} denotes the set of positive integers, \mathbb{Q} denotes the rational numbers and \mathbb{k} denotes a field.

H1. For each of the following, show that V is an affine variety by expressing V as the zero locus of certain polynomials in $\mathbb{R}[x, y]$.

(a) $V = \{(1, 0), (2, 0)\} \subset \mathbb{R}^2$.

(b) $V = \{(1, 0), (2, 3)\} \subset \mathbb{R}^2$. (Use Lemma 2; this question is much trickier than (a).)

(c) $V = \{(1, 0), (1, 1), (2, 3)\} \subset \mathbb{R}^2$.

H2. The following is a modification of Exercise 6(a)(b) on pages 35-36 of [CLO].

(a) Let x denote a variable and consider the ideal $I = \langle x \rangle \subset \mathbb{k}[x]$. As an ideal, I has a basis consisting of the one element x. Write down what this means using the definition of such a basis. However, since $\mathbb{k}[x]$ is a vector space over \mathbb{k}, I can also be regarded as a subspace of $\mathbb{k}[x]$. Write down the definition of a vector space basis for I. Prove that any vector-space basis of I is infinite. Hint: by theorems in linear algebra, if one vector-space basis of a vector space is infinite, then they all are, so it suffices to find one such basis for I that is infinite.

(b) In linear algebra, a basis of a vector space V must span V and be linearly independent over \mathbb{k}, whereas, for an ideal, a basis is concerned only with spanning – there is no mention of any sort of independence. The reason is that once we allow polynomial coefficients, no independence is possible. To see this, consider the ideal $\langle x, y \rangle \subset \mathbb{k}[x, y]$. Show that zero can be written as an algebraic combination of x and y with nonzero polynomial coefficients.

H3. Let $I = \langle f_1, \ldots, f_s \rangle \subseteq \mathbb{k}[x_1, \ldots, x_n]$. Prove that $\mathcal{V}(I) = \mathcal{V}(f_1, \ldots, f_s)$.

H4. Prove that if J is an ideal in $\mathbb{k}[x_1, \ldots, x_n]$, then $\sqrt{J} \subseteq \mathbb{II}(\mathcal{V}(J))$ (the reverse containment is also true if \mathbb{k} is algebraically closed, but is much harder to prove, so we will cover it in class).

H5. Prove that if I is an ideal in $\mathbb{k}[x_1, \ldots, x_n]$, then $\mathcal{V}(\sqrt{I}) = \mathcal{V}(I)$.

Page 1 of 5
H6. In $\mathbb{k}[x, y]$, determine whether or not $x + y$ belongs to the ideal $\sqrt{\langle x^3, y^3, xy(x + y) \rangle}$.

H7. In $\mathbb{k}[x_1, \ldots, x_n]$, let $J = \langle x_1x_2, (x_1 - x_2)x_1 \rangle$.
 (a) Find alternative simpler generators for J.
 (b) Find $\mathcal{V}(J)$.
 (c) Find \sqrt{J} (do not assume \mathbb{k} is algebraically closed).

H8. In $\mathbb{k}[x, y, z]$, let $J = \langle x + z, x^2y, x - z^2 \rangle$.
 (a) Find $\mathcal{V}(J)$.
 (b) Assume $\text{char}(\mathbb{k}) \neq 2$. Use (a) and the fact $\mathcal{V}(J) = \mathcal{V}(\sqrt{J})$, to prove that $x(x + 3z) \notin \sqrt{J}$ (do not assume \mathbb{k} is algebraically closed). (Hint: suppose the element belongs to \sqrt{J} and derive a contradiction.)

H9. Let $f = x^2z - 6y^4 + 2xy^3z \in \mathbb{k}[x, y, z]$ and $p = (-3, 1, 2) \in \mathbb{k}^3$. Verify that $f(p) = 0$. This implies that f belongs to the maximal ideal $\langle x+3, y-1, z-2 \rangle$, and so $f = f_1(x+3) + f_2(y-1) + f_3(z-2)$ for some $f_1, f_2, f_3 \in \mathbb{k}[x, y, z]$. Use the following strategy to find two different ways to write f as $f = f_1(x+3) + f_2(y-1) + f_3(z-2)$ where $f_1, f_2, f_3 \in \mathbb{k}[x, y, z]$.
 (a) (i) Use long division to divide f by $x + 3$ and call the remainder r_1.
 (ii) Use long division to divide r_1 by $z - 2$ and call the remainder r_2.
 (iii) Use long division to divide r_2 by $y - 1$.
 (b) (i) Use long division to divide f by $z - 2$ and call the remainder s_1.
 (ii) Use long division to divide s_1 by $x + 3$ and call the remainder s_2.
 (iii) Use long division to divide s_2 by $y - 1$.

H10. Suppose \mathbb{k} is algebraically closed and that I is an ideal of $R = \mathbb{k}[x_1, \ldots, x_n]$. Let $f \in R$ be such that $\mathcal{V}(f) \cap \mathcal{V}(I) = \emptyset$. Prove that there exists $r \in R$ such that $rf - 1 \in I$. (Hint: let $J = I + Rf$; what is $\mathcal{V}(J)$? Consider the weak nullstellensatz.)

H11. In $\mathbb{k}[x, y, z]$, prove that $\langle xy, xz \rangle$ is radical, but not prime.

H12. Prove that every prime ideal is radical. (Assume the ring is $\mathbb{k}[x_1, \ldots, x_n]$ or any commutative ring with 1, whichever is comfortable for you.)
H13. Let $0 \neq f \in \mathbb{k}[x_1, \ldots, x_n]$; prove that $\langle f \rangle$ is prime if and only if f is irreducible.

H14. Suppose that \mathbb{k} is algebraically closed and $0 \neq h \in \mathbb{k}[x_1, \ldots, x_n]$. Prove that if h is irreducible, then so is $\mathcal{V}(h)$; prove the converse with the additional assumption that $\langle h \rangle$ is radical.

H15. Prove that if P is a prime ideal that contains an ideal I, then $\sqrt{I} \subseteq P$.

H16. Prove that an ideal Q is primary iff whenever $ab \in Q$ (for $a, b \in \mathbb{k}[x_1, \ldots, x_n]$), we have either (a) $a \in Q$ or (b) $b \in Q$ or (c) $a \in \sqrt{Q}$ and $b \in \sqrt{Q}$.

H17. Prove that $\langle x, y^2 \rangle$ is a primary ideal in $\mathbb{k}[x, y]$.

H18. Prove that $\langle xy, y^2 \rangle = \langle y \rangle \cap \langle x, y^2 \rangle$.

H19. Prove that $\langle xy(y - 1), y^2(y - 1) \rangle = \langle y \rangle \cap (y - 1) \cap \langle x, y \rangle^2$.

H20. Let $J \subseteq \mathbb{k}[x_1, \ldots, x_n]$ be an ideal and write $V = \mathcal{V}(J)$.

(a) Suppose that $|V| < \infty$; say $V = \{p_1, \ldots, p_m\}$. By considering $V_i = V \setminus \{p_i\}$, for each i, and Proposition 8 in §1.4 of our textbook, show that, for each i, there exists $f_i \in \mathbb{k}[x_1, \ldots, x_n]$ such that $f_i(p_j) = \delta_{ij}$, where δ_{ij} is the Kronecker-delta function (meaning $\delta_{ij} = 1$ if $i = j$ and $\delta_{ij} = 0$ if $i \neq j$).

(b) Continuing on from (a), write \bar{f}_i for the image of f_i in $\frac{\mathbb{k}[x_1, \ldots, x_n]}{J}$. Prove that $\bar{f}_1, \ldots, \bar{f}_m$ are linearly independent in $\frac{\mathbb{k}[x_1, \ldots, x_n]}{J}$.

(c) Prove that if $|V| < \infty$, then $|V| \leq \dim_{\mathbb{k}} \left(\frac{\mathbb{k}[x_1, \ldots, x_n]}{J} \right)$. (Hint: use (a) and (b).)

(d) Suppose that \mathbb{k} is an algebraically closed field and $|V| < \infty$. Prove that if $\sqrt{J} = J$ (i.e., J is radical), then $|V| = \dim_{\mathbb{k}} \left(\frac{\mathbb{k}[x_1, \ldots, x_n]}{J} \right)$. (Hint: prove that the \bar{f}_i in part (b) span $\frac{\mathbb{k}[x_1, \ldots, x_n]}{J}$ and be careful to use the Nullstellensatz when appropriate.)

(e) Let $\mathbb{k} = \mathbb{R}$ and $V = \mathcal{V}(x^2 + 1)$. Show that $|V| < \dim_{\mathbb{R}} \left(\frac{\mathbb{R}[x]}{(x^2 + 1)} \right)$, so that equality in (c) can fail if \mathbb{k} is not an algebraically closed field, even if $\sqrt{J} = J$.

(f) Let \mathbb{k} denote any field and suppose that $\dim_{\mathbb{k}} \left(\frac{\mathbb{k}[x_1, \ldots, x_n]}{J} \right) < \infty$.

Page 3 of 5
(i) Show that \(\sum_{j=0}^{t} c_j x_1^j = 0 \) in \(\mathbb{k}[x_1, \ldots, x_n] / J \) for some \(c_1, \ldots, c_t \in \mathbb{k} \), not all zero, and some \(t \in \mathbb{N} \cup \{0\} \). Similarly, analogous statements hold for \(x_2, \ldots, x_n \). Use this result to prove that there is at most a finite choice for all the coordinates of all the points in \(V \), and hence \(|V| < \infty \).

(ii) Prove that \(|V| \leq \dim_k \left(\frac{\mathbb{k}[x_1, \ldots, x_n]}{\sqrt{J}} \right) \). (Hint: consider (f)(i), (c) and the fact that \(V = \mathcal{V}(J) = \mathcal{V}(\sqrt{J}) \).)

H21. Let \(\mathbb{k} = \{0, 1\} \) and let \(\phi = \left(\frac{1}{x}, \frac{1}{x-1} \right) : \mathbb{A}^1 \rightarrow \mathbb{A}^2 \). Show that \(\phi \) does not define a rational mapping.

H22. Let \(V \) denote an irreducible variety and let \(f \in \mathbb{k}(V) \). If we write \(f = g/h \), where \(g, h \in \mathbb{k}[V] \), then we know that \(f \) is defined on \(V \setminus \mathcal{V}_V(h) \). However, as discussed in class, \(f \) might make sense on a larger set. We will illustrate this possibility in this question by considering \(V = \mathcal{V}(xz - yw) \subset \mathbb{C}^4 \).

(a) You may assume that \(xz - yw \) is irreducible in \(\mathbb{C}[x, y, z, w] \) and that \(\langle xz - yw \rangle \) is a prime ideal in \(\mathbb{C}[x, y, z, w] \). Show that it follows that \(V \) is irreducible and that \(\mathbb{I}(V) = \langle xz - yw \rangle \).

(b) Show that \(\mathcal{V}_V(y) \) is the union of the planes \(\mathcal{V}(x, y) \) and \(\mathcal{V}(y, z) \).

(c) Let \(f = x/y \in \mathbb{C}(V) \), so \(f \) is defined on \(V \setminus \mathcal{V}_V(y) \). Show that \(f = w/z \) in \(\mathbb{C}(V) \), and, using (b), conclude that \(f \) is defined on \(V \setminus \mathcal{V}(y, z) \), so \(f \) has domain larger than originally thought. (Note that what makes this possible is that we have two fundamentally different ways of representing the rational function \(f \). This is one reason why there are subtle issues when working with rational functions.)

H23. Let \(\mathbb{k} \) be an algebraically closed field. Show that every homogeneous polynomial in two variables, \(x, y \), with coefficients in \(\mathbb{k} \) is a finite product of linear homogeneous polynomials.

H24. Let \(\mathbb{k} = \mathbb{R} \) and consider the hyperbola \(\mathcal{V}(xy - 1) \subset \mathbb{R}^2 \).

(a) Homogenize the defining polynomial to get a new variety \(\mathcal{V}(f) \subset \mathbb{P}^2 \).

(b) Recognise the original hyperbola as a subset \(V \) of \(\mathcal{V}(f) \).

(c) Find \(\mathcal{V}(f) \setminus V \), and describe it.

(d) Explain what \(\mathcal{V}(f) \setminus V \) is describing intuitively in the \(\mathbb{R}^2 \) picture.
H25. Let \(k = \mathbb{R} \) and \(0 \neq c \in \mathbb{R} \). Consider the vertical line \(\mathcal{V}(x - c) \subset \mathbb{R}^2 \).

(a) Homogenize the defining polynomial to get a new variety \(\mathcal{V}(f) \subset \mathbb{P}^2 \).
(b) Recognise the original vertical line as a subset \(V \) of \(\mathcal{V}(f) \).
(c) Find \(\mathcal{V}(f) \setminus V \), and describe it.
(d) Explain what \(\mathcal{V}(f) \setminus V \) is describing intuitively in the \(\mathbb{R}^2 \) picture.

H26. (a) Prove that a homogeneous ideal \(J \subset k[x_0, \ldots, x_n] \) is prime if and only if whenever the product of two homogeneous polynomials \(f, g \) satisfies \(fg \in J \), then \(f \in J \) or \(g \in J \).
(b) Let \(J \) denote a homogeneous ideal. Show that the projective variety \(\mathcal{V}(J) \) is irreducible if and only if \(I(\mathcal{V}(J)) \) is prime.

H27. Assume that \(k = \mathbb{C} \). Find the singular points and the tangent lines at the singular points for the following affine varieties in \(\mathbb{A}^2 = \mathbb{C}^2 \):

(a) \(\mathcal{V}(y^2 - x^3 + x) \)
(b) \(\mathcal{V}((x^2 + y^2)^2 + 3x^2y - y^3) \)
(c) \(\mathcal{V}((x^2 + y^2)^3 - 4x^2y^2) \).

H28. Assume that \(k = \mathbb{C} \). Given an affine variety \(V \), the tangent space to \(V \) at the origin \(p \in V \) is defined to be

\[
T_p(V) = \{ (\alpha_1, \ldots, \alpha_n) \in \mathbb{A}^n : \sum_{i=1}^{n} \frac{\partial g}{\partial x_i}(p)\alpha_i = 0 \text{ for all } g \in \mathbb{I}(V) \}.
\]

If \(0 \neq f \in \mathbb{C}[x_1, \ldots, x_n] \) is irreducible and if \(\mathcal{V}(f) \) contains the origin \(p \), prove that

\[
T_p(\mathcal{V}(f)) = \{ (\alpha_1, \ldots, \alpha_n) \in \mathbb{A}^n : \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(p)\alpha_i = 0 \}.
\]

H29. Let \(f = y - x^3 \), \(g = y \in \mathbb{C}[x, y] \). Homogenize \(f \) and \(g \) using a new variable, \(z \), and order the variables \(x, y, z \). Use \(U_x \) for \(U_0 \), \(U_y \) for \(U_1 \), and \(U_z \) for \(U_2 \). You should find that \(\mathcal{V}(hf) \cap \mathcal{V}(hg) = \{(0,0,1)\} \subset \mathbb{P}^2 \). Hence, \(U_x \cap \mathcal{V}(hf) \cap \mathcal{V}(hg) = \emptyset \), so \(i(\mathcal{V}(hf) \cap \mathcal{V}(hg), p) = 0 \) for all \(p \in U_x \). Verify this is true by applying the definition of \(i(\mathcal{V}(hf) \cap \mathcal{V}(hg), p) \) using \(U_j = U_x \).

H30. Let \(f = x^2 - y^2 - 1 \), \(g = y - x \in \mathbb{C}[x, y] \). Show that \(i(\mathcal{V}(hf) \cap \mathcal{V}(hg), p) = 2 \) for all \(p \in \mathcal{V}(hf) \cap \mathcal{V}(hg) \).