Adaptive Dynamic Programming (ADP)
For Feedback Control Systems

Talk available online at
http://ARRI.uta.edu/acs
It is man’s obligation to explore the most difficult questions in the clearest possible way and use reason and intellect to arrive at the best answer.

Man’s task is to understand patterns in nature and society.

The first task is to understand the individual problem, then to analyze symptoms and causes, and only then to design treatment and controls.

Ibn Sina 1002-1042
(Avicenna)
Importance of Feedback Control

Darwin- FB and natural selection
Volterra- FB and fish population balance
Adam Smith- FB and international economy
James Watt- FB and the steam engine
FB and cell homeostasis

The resources available to most species for their survival are meager and limited

Nature uses Optimal control
Optimality in Biological Systems

Cell Homeostasis

The individual cell is a complex feedback control system. It pumps ions across the cell membrane to maintain homeostasis, and has only limited energy to do so.

Cellular Metabolism

Permeability control of the cell membrane

Rocket Orbit Injection

Dynamics

\[\dot{r} = \omega \]

\[\dot{\omega} = \frac{v^2}{r} - \frac{\mu}{r^2} + \frac{F}{m} \sin \phi \]

\[\dot{v} = -\omega v + \frac{F}{m} \cos \phi \]

\[\dot{m} = -Fm \]

Objectives

Get to orbit in minimum time
Use minimum fuel

http://microsat.sm.bmstu.ru/e-library/Launch/Dnepr_GEO.pdf
Adaptive Control is generally not Optimal

Optimal Control is off-line, and needs to know the system dynamics to solve design eqs.

We want ONLINE DIRECT ADAPTIVE OPTIMAL Control For any performance cost of our own choosing

Reinforcement Learning turns out to be the key to this!

Different methods of learning

Reinforcement learning
Ivan Pavlov 1890s

We want OPTIMAL performance
- ADP- Approximate Dynamic Programming

Actor-Critic Learning

Desired performance

Adaptive Learning system
Tune actor

Environment

Critic

Reinforcement signal

System

Control Inputs

Actor

outputs
Markov Decision Process

\[(X, U, P, R)\]

\(X = \text{states}\)

\(U = \text{controls}\)

\(P^u_{x,x'} = \Pr\{x' \mid x, u\}\)

Probability of going to state \(x'\) from state \(x\) given that the control is \(u\)

\(R^u_{xx'}\)

Expected reward on going to state \(x'\) from state \(x\) given that the control is \(u\)

Optimal Sequential Decision Problems

control or action *strategy* or *policy*.

\[\pi : X \times U \rightarrow [0,1] \]

\[\pi(x,u) = \Pr\{u \mid x\} \]

performance index

\[J_{k,T} = \sum_{i=0}^{T} \gamma^i r_{k+i} = \sum_{i=k}^{k+T} \gamma^{i-k} r_i \]

stage cost at time \(k \)

\[r_k = r_k(x_k, u_k, x_{k+1}) \]

discount factor

\[0 \leq \gamma < 1 \]

stochastic or mixed policy

\[\pi_k(x_k, u_k) \]

probability distribution vectors

stationary policies

\[\pi_k(x,u) = \pi(x,u) = \Pr\{u \mid x\}, \; \text{for all } k \]

deterministic policies = functions from \(X \) to \(U \)

\[\mu_k(x) : X \rightarrow U; k = 0,1,... \]

Stationary deterministic policies

\[\pi = \{\mu, \mu, \cdots\} \]
Value and Optimality

value of a policy \(\pi(x,u) \)

\[
V_k^\pi(x) = E_{\pi} \{ J_{k,T} \mid x_k = x \} = E_{\pi} \{ \sum_{i=k}^{k+T} \gamma^{i-k} r_i \mid x_k = x \}.
\]

Optimal control problem

determine a policy \(\pi(x,u) \) to minimize the expected future cost

optimal policy

\[
\pi^*(x,u) = \arg\min_{\pi} V_k^\pi(s) = \arg\min_{\pi} E_{\pi} \{ \sum_{i=k}^{k+T} \gamma^{i-k} r_i \mid x_k = x \}.
\]

optimal value

\[
V_k^*(x) = \min_{\pi} V_k^\pi(x) = \min_{\pi} E_{\pi} \{ \sum_{i=k}^{k+T} \gamma^{i-k} r_i \mid x_k = x \}.
\]

Under the assumption that the Markov chain corresponding to each policy is ergodic, it can be shown that every MDP has a stationary deterministic optimal policy (Wheeler and Narendra 1986, Bertsekas and Tsitsiklis 1996).
A Backward Recursion for the Value

\[V_k^\pi(x) = E_\pi \{ J_k \ | \ x_k = x \} = E_\pi \left\{ \sum_{i=k}^{k+T} \gamma^{i-k} r_i \ | \ x_k = x \right\} \]

\[V_k^\pi(x) = E_\pi \left\{ r_k + \gamma \sum_{i=k+1}^{k+T} \gamma^{i-(k+1)} r_i \ | \ x_k = x \right\} \]

\[V_k^\pi(x) = \sum_u \pi(x,u) \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma E_\pi \left\{ \sum_{i=k+1}^{k+T} \gamma^{i-(k+1)} r_i \ | \ x_{k+1} = x' \right\} \right]. \]

using the Chapman-Kolmogorov identity and the Markov property

Backwards Recursion

\[V_k^\pi(x) = \sum_u \pi(x,u) \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V_{k+1}^\pi(x') \right]. \]
Dynamic Programming

The Backward Recursion

\[V_k^\pi(x) = \sum_u \pi(x,u) \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V_{k+1}^\pi(x') \right]. \]

Optimal Value

\[V_k^*(x) = \min_{\pi} V_k^\pi(x) = \min_{\pi} \sum_u \pi(x,u) \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V_{k+1}^\pi(x') \right]. \]

Bellman optimality principle

\[V_k^*(x) = \min_{\pi} \sum_u \pi(x,u) \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V_{k+1}^\pi(x') \right]. \]

\[u_k^* = \arg \min_{\pi} \sum_u \pi(x,u) \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V_{k+1}^\pi(x') \right]. \]

Under the assumption that the Markov chain corresponding to each policy is ergodic, every MDP has a stationary deterministic optimal policy:

\[V_k^*(x) = \min_u \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V_{k+1}^\pi(x') \right], \]

\[u_k^* = \arg \min_u \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V_{k+1}^\pi(x') \right]. \]

Offline methods for working backwards in time to determine optimal policies
Bellman Equation

To derive forward-in-time methods for finding optimal values and optimal policies, set the time horizon T to infinity

$$J_k = \sum_{i=0}^{\infty} \gamma^i r_{k+i} = \sum_{i=k}^{\infty} \gamma^{i-k} r_i .$$

$$V^\pi(x) = E_\pi \{ J_k \mid x_k = x \} = E_\pi \{ \sum_{i=k}^{\infty} \gamma^{i-k} r_i \mid x_k = x \} .$$

The Backward Recursion for the Value

$$V_k^\pi(x) = \sum_u \pi(x, u) \sum_{x'} P_{xx'}^u [R_{xx'}^u + \gamma V_{k+1}^\pi(x')] .$$

becomes the **Bellman equation**

$$V^\pi(x) = \sum_u \pi(x, u) \sum_{x'} P_{xx'}^u [R_{xx'}^u + \gamma V^\pi(x')] .$$

N simultaneous linear equations

Same value function appears on both sides!
Bellman Equation

\[V^\pi(x) = \sum_u \pi(x, u) \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V^\pi(x') \right]. \]

Can be interpreted as a **consistency equation** that must be satisfied by the value function at each time stage. Expresses a relation between the current value of being in state \(x \) and the value(s) of being in next state \(x' \) given that policy.

Temporal Difference Idea - Later

Captures the action, observation, evaluation, and improvement mechanisms of reinforcement learning.
Example 1: Gridworld

At each cell the four actions are equally probable \(\pi(s, a) = \frac{1}{4} \)

Set discount rate \(\gamma = 0.9 \)

Reward is 0 for all states except for A and B

except that moves which take the agent off the grid are valued at -1

\[
V^\pi(s) = \sum_a \pi(s, a) \sum_{s'} P_{ss'}^a \left\{ R_{ss'}^a + \gamma V^\pi(s') \right\}
\]

Bellman eq must hold at each cell (state) \(s \)

Verify at red cell:

\[
\frac{1}{4} \times 1 \times \{0.9 \times 0.4\} + \frac{1}{4} \times 1 \times \{0.9 \times 2.3\} + \frac{1}{4} \times 1 \times \{0.9 \times 0.7\} + \frac{1}{4} \times 1 \times \{0.9 \times (-0.4)\} = 0.7
\]

To find the value of a policy with \(N \) states, must solve the \(n \) simultaneous linear equations

\[
V^\pi(s) = \sum_a \pi(s, a) \sum_{s'} P_{ss'}^a \left\{ R_{ss'}^a + \gamma V^\pi(s') \right\}
\]

Bellman eq
Bellman Optimality Equation (HJB)

optimal value satisfies

\[V^* (x) = \min_{\pi} \min_{u} \pi(x, u) P^{u}_{xx'} \left[R^{u}_{xx'} + \gamma V^\pi (x') \right]. \]

Bellman’s optimality principle yields the Bellman Optimality Equation

\[V^* (x) = \min_{\pi} \min_{u} \pi(x, u) \sum_{x'} P^{u}_{xx'} \left[R^{u}_{xx'} + \gamma V^* (x') \right]. \]

under the ergodicity assumption on the Markov chains corresponding to each policy, one has

\[V^* (x) = \min_{u} \sum_{x'} P^{u}_{xx'} \left[R^{u}_{xx'} + \gamma V^* (x') \right]. \]

\[u^* = \arg \min_{u} \sum_{x'} P^{u}_{xx'} \left[R^{u}_{xx'} + \gamma V^* (x') \right]. \]

This consists of \(N \) simultaneous nonlinear eqs that can be solved for \(V^*(s) \)

Hamilton-Jacobi-Bellman (HJB) Equation

Compare to Bellman Equation- N linear equations

\[V^\pi (x) = \sum_{u} \pi(x, u) \sum_{x'} P^{u}_{xx'} \left[R^{u}_{xx'} + \gamma V^\pi (x') \right]. \]
Example 1: Gridworld

Figure 3.8 Optimal solutions to the gridworld example.

Solve 5x5=25 simultaneous nonlinear eqs

\[
V^*(s) = \max_\pi \sum_a \pi(s,a) \sum_{s'} P_{ss'}^a \left\{ R_{ss'}^a + \gamma V^*(s') \right\}
\]

Then

\[
\pi^*(s) = \arg \max_a \sum_{s'} P_{ss'}^a \left\{ R_{ss'}^a + \gamma V^*(s') \right\}
\]

Comp. Intelligence guys MAXIMIZE the reward function
Bellman Equation for Discrete-Time Linear Quadratic Regulator (DT LQR)

Deterministic state transition equation

\[x_{k+1} = Ax_k + Bu_k \]

Deterministic infinite horizon performance index

\[J_k = \frac{1}{2} \sum_{i=k}^{\infty} r_i = \frac{1}{2} \sum_{i=k}^{\infty} (x_i^T Q x_i + u_i^T R u_i) . \]

Value function for a fixed policy

\[V(x_k) = \frac{1}{2} \sum_{i=k}^{\infty} r_i = \frac{1}{2} \sum_{i=k}^{\infty} (x_i^T Q x_i + u_i^T R u_i) . \]

Bellman Equation - a difference equation equivalent

\[V(x_k) = \frac{1}{2} \left(x_k^T Q x_k + u_k^T R u_k \right) + \frac{1}{2} \sum_{i=k+1}^{\infty} \left(x_i^T Q x_i + u_i^T R u_i \right) = \frac{1}{2} \left(x_k^T Q x_k + u_k^T R u_k \right) + V(x_{k+1}) . \]

Value is quadratic in the state \(V_k(x_k) = \frac{1}{2} x_k^T P x_k \),

\[2V(x_k) = x_k^T P x_k = x_k^T Q x_k + u_k^T R u_k + x_{k+1}^T P x_{k+1} , \]

SVFB policies \(u_k = \mu(x_k) = -Kx_k \)

\[2V(x_k) = x_k^T P x_k = x_k^T Q x_k + x_k^T K^T R K x_k + x_k^T (A - BK)^T P (A - BK)x_k . \]

Bellman eq is a Lyapunov equation

\[(A - BK)^T P (A - BK) - P + Q + K^T R K = 0 . \]

Does not contain A,B

Contains A, B

SVFB must be stabilizing
Bellman Optimality Equation for DT LQR: the Algebraic Riccati Equation

Bellman Optimality equation (HJB)

\[V^*(x) = \min_u \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V^*(x') \right]. \]

\[u^* = \text{arg min}_u \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V^*(x') \right]. \]

Hamiltonian function

\[H(x_k, u_k) = x_k^T Q x_k + u_k^T R u_k + (A x_k + B u_k)^T P (A x_k + B u_k) - x_k^T P x_k. \]

For optimality, the Hamiltonian is equal to zero. Bellman eq is \(H(x_k, u_k) = 0 \)

Stationarity condition

\[\frac{\partial H(x_k, u_k)}{\partial u_k} = 0 \]

Optimal control

\[u_k = -K x_k = -(B^T P B + R)^{-1} B^T P A x_k. \]

Bellman Optimality Equation = Algebraic Riccati Equation

\[A^T P A - P + Q - A^T P B (B^T P B + R)^{-1} B^T P A = 0. \]
Closed-Loop Markov Chain
Policy Evaluation and Policy Improvement

consider algorithms that repeatedly interleave the two procedures:

Policy Evaluation by Bellman Equation:

\[
V^\pi(x) = \sum_u \pi(x,u) \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V^\pi(x') \right] \quad \text{for all } x \in S \subseteq X.
\]

Policy Improvement:

\[
\pi'(x,u) = \arg \min_u \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V^\pi(x') \right] \quad \text{for all } x \in S \subseteq X.
\]

S is a suitably selected subspace of the state-space

Policy Improvement makes \(V^{\pi'}(x) \leq V^\pi(x) \)

the policy \(\pi'(x,u) \) is said to be greedy with respect to value function \(V^\pi(x) \)

At each step, one obtains a policy that is no worse than the previous policy. Can prove convergence under fairly mild conditions to the optimal value and optimal policy. Most such proofs are based on the Banach Fixed Point Theorem. One step is a contraction map.

There is a large family of algorithms that implement the policy evaluation and policy improvement procedures in various ways.
Policy Iteration - An iterative solution algorithm for the optimal value and policy

Start with admissible initial policy \(\pi_0(x,u) \)

Policy evaluation by Bellman eq.

\[
V_j(x) = \sum_u \pi_j(x,u) \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V_j(x') \right] \quad \text{for all } x \in X. \quad N \text{ simultaneous linear equations}
\]

Policy Improvement

\[
\pi_{j+1}(x,u) = \arg \min_u \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V_j(x') \right] \quad \text{for all } x \in X.
\]

Note that \(j \) is not the time or stage index \(k \), but a PI step iteration index.

Policy Evaluation equation is a system of \(N \) simultaneous linear equations, one for each state.

Initial policy must be admissible- selected so that \(V_1 \leq V_0 \)

Then, for finite Markov chains with \(N \) states, PI converges to solution to HJB eq in a finite number of steps (less than or equal to \(N \)) because there are only a finite number of policies.

Solves the nonlinear HJB eq using successive solutions of LINEAR equations

It will be seen how to implement PI for dynamical systems **online in real-time** by observing data measured along the system trajectories.

Generally, data for multiple times \(k \) is needed to solve the Bellman equation at each step \(j \).
Iterative Policy Evaluation

The Bellman equation

$$V_j(x) = \sum_u \pi_j(x,u) \sum_{x'} P_{xx'}^u \left[R_{xx'} + \gamma V_j(x') \right]$$

A system of N simultaneous equations.

Instead of directly solving the Bellman equation, one can solve it by an iterative policy evaluation procedure. Note that Bellman eq is a fixed point equation for $V_j(.)$

It defines the **iterative policy evaluation map**

$$V^{i+1}_j(x) = \sum_u \pi_j(x,u) \sum_{x'} P_{xx'}^u \left[R_{xx'} + \gamma V^i_j(x') \right], \quad i = 1, 2, ...$$

Can be shown to be a contraction map under rather mild conditions

By the Banach fixed point theorem the iteration can be initialized at any nonnegative value of $V^1_j(.)$ and it will converge to the solution of Bellman eq.

Index j in refers to the step number of the PI Algorithm. By contrast i is an iteration index.

Compare to Dynamic programming

$$V^\pi_k(x) = \sum_u \pi(x,u) \sum_{x'} P_{xx'}^u \left[R_{xx'} + \gamma V^\pi_{k+1}(x') \right].$$

backwards recursion for the value at time k in terms of the value at time $k+1$.
Example 2: Gridworld

Consider the 4 x 4 gridworld shown below.

At each cell the four actions are equally probable

\[\pi(s, a) = \frac{1}{4} \]

\[R_t = \sum_{k=0}^{T} \gamma^k r_{t+1+k} \]

with all rewards -1 until final states (grey)

\[\gamma = 1 \]

Sweep through the states

\[V_{i+1}^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} P_{ss'}^{a} \left\{ R_{ss'}^{a} + \gamma V_i^{\pi}(s') \right\} \]

\[V_{i+1}^{\pi}(s) = \frac{1}{4} \times 1 \times \{ r_s^R + s_i^R \} + \frac{1}{4} \times 1 \times \{ r_s^A + s_i^A \} + \frac{1}{4} \times 1 \times \{ r_s^L + s_i^L \} + \frac{1}{4} \times 1 \times \{ r_s^B + s_i^B \} \]

Solution to Bellman eq for the equi-probable control
Example 11.3-1: Solution of Partial Differential Equations: Relaxation Algorithms

Consider Poisson’s equation in two dimensions

$$\Delta V(x, y) = \nabla^2 V(x, y) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) V(x, y) = f(x, y), \quad (11.3.7)$$

where $\Delta = \nabla^2$ is the Laplacian operator and ∇ the gradient. Function $f(x, y)$ is a forcing function, often specified on the boundary of a region.

![Figure 11.3-1. Shows sampling Poisson's equation in the (x,y) plane with a uniform mesh of size h.](image)

Discretizing the equation on a uniform mesh as shown in Figure 11.3-1 with grid size h in the (x,y) plane one writes in terms of the forward difference

$$\frac{\partial V(x, y)}{\partial x} = \frac{1}{h} (V(x+h, y) - V(x, y)) + O(h),$$

$$\frac{\partial^2 V(x, y)}{\partial x^2} = \frac{1}{h^2} (V(x+h, y) + V(x-h, y) - 2V(x, y)) + O(h^2),$$

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) V(x, y) = \frac{1}{h^2} (V(x+h, y) + V(x-h, y) + V(x, y+h) + V(x, y-h) - 4V(x, y)) = f(x, y).$$

Indexing the (x,y) positions with an index i and denoting $X_i = (x_i, y_i)$ one has approximately to order h^2

$$\frac{1}{h^2} (V(X_{i+1}) + V(X_{i-1}) + V(X_{i+n}) + V(X_{i-n}) - 4V(X_i)) - f(X_i), \quad (11.3.9)$$

for states not on the boundary and a similar equation for boundary states. $X_{i,n}$ denotes the (x,y) location of the state to the right of X_i, and similarly for states to the left, up, and down relative to X_i. This is a set of N simultaneous equations.
\[\frac{1}{h^2} \left(V(X_{i,R}) + V(X_{i,L}) + V(X_{i,u}) + V(X_{i,d}) - 4V(X_i) \right) = f(X_i), \quad (11.3.9) \]

One can interpret (11.3.8) as a Bellman equation (11.2.17) for a properly defined underlying MDP. Specifically, define an MDP with stage costs equal to zero and \(\gamma = 1 \). Then, one may interpret the state transitions as deterministic and the control as the equi-probable control with probabilities of \(\frac{1}{4} \) (for non-boundary nodes) for moving up, right, down, and left. Alternatively, one may interpret the control as deterministic and the state transition probabilities as equi-probable with probabilities of \(\frac{1}{4} \) for moving up, right, down, and left. In either case, the Bellman equation for the MDP is (11.3.8). Functions \(f(X_i) \) may be interpreted as stage costs.

Now the iterative policy evaluation method of solution (11.3.6) performs the iterations
\[V^{m+1}(X_i) = \frac{1}{4} V^m(X_{i,u}) + \frac{1}{4} V^m(X_{i,d}) + \frac{1}{4} V^m(X_{i,l}) + \frac{1}{4} V^m(X_{i,R}) - \frac{h^2}{4} f(X_i). \quad (11.3.10) \]

The theory of MDP guarantees that this algorithm will converge to the solution of (11.3.8). These updates may be done for all nodes or states simultaneously. Then, this is nothing but the relaxation method for numerical solution of Poisson's equation. The relaxation algorithm converges, but may do so slowly. Variants have been developed to speed it up.
Value Iteration - An iterative solution algorithm for the optimal value and policy

Start with initial policy $\pi_0(x,u)$

Value Update

$$V_{j+1}(x) = \sum_u \pi_j(x,u) \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V_j(x') \right]$$

for all $x \in S_j \subseteq X$. One step of iterative PI

Policy Improvement

$$\pi_{j+1}(x,u) = \arg \min_u \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V_j(x') \right]$$

for all $x \in S_j \subseteq X$.

Note that j is not the time or stage index k, but a VI step iteration index.

combine the value update and policy improvement into one equation

$$V_{j+1}(x) = \min_\pi \sum_u \pi(x,u) \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V_j(x') \right]$$

equivalently under the ergodicity assumption

$$V_{j+1}(x) = \min_u \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V_j(x') \right]$$

Value Update is a simple iteration, not N simultaneous linear equations
It uses a single iteration of iterative policy evaluation

VI- Arbitrary Initial policy
PI- stabilizing initial policy

PI converges in a finite number of steps, less than or equal to N
VI converges slowly
Example 2: Gridworld

Value Iteration

Example 4.1 Consider the 4×4 gridworld shown below.

\begin{table}
\begin{tabular}{|c|c|c|c|}
\hline
1 & 2 & 3 & \\
\hline
4 & 5 & 6 & 7 \\
\hline
8 & 9 & 10 & 11 \\
\hline
12 & 13 & 14 & \\
\hline
\end{tabular}
\end{table}

\textbf{actions} \\
\textbf{r} = -1 on all transitions

Sweep through the states or cells

Update value

$$V_{j+1}(x) = \sum_u \pi_j(x,u) \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V_j(x') \right]$$

Update control policy

$$\pi_{j+1}(x,u) = \arg\min_u \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V_j(x') \right]$$

First step uses the equi-probable control:

$$V_{\pi_1}(s) = \frac{1}{4} \times 1 \times \{r_{sR} + s_i^K\} + \frac{1}{4} \times 1 \times \{r_{sA} + s_i^A\} + \frac{1}{4} \times 1 \times \{r_{sL} + s_i^L\} + \frac{1}{4} \times 1 \times \{r_{sB} + s_i^B\}$$

Only the optimal policy is greedy wrt its own value
Asynchronous Value Iteration.

Value Iteration (VI) Algorithm

Initialize. Select an initial policy $\pi_0(x,u)$. Do for $j=0$ until convergence:

Value Update:

$$V_{j+1}(x) = \sum_u \pi_j(x,u) \sum_{x'} P_{x,x'}^{u} \left[R_{x,x'}^u + \gamma V_j(x') \right], \text{ for all } x \in S_j \subseteq X.$$ \hspace{1cm} (11.3.15)

Policy Improvement:

$$\pi_{j+1}(x,u) = \arg\min_u \sum_{x'} P_{x,x'}^u \left[R_{x,x'}^u + \gamma V_{j+1}(x') \right], \text{ for all } x \in S_j \subseteq X.$$ \hspace{1cm} (11.3.16)

Asynchronous Value Iteration. Standard VI takes the update set as $S_j = X$, for all j. That is, the value and policy are updated for all states simultaneously. Asynchronous VI methods perform the updates on only a subset of the states at each step. In the extreme case, one may perform the updates on only one state at each step.

It is shown in (Bertsekas and Tsitsiklis 1996) that standard VI ($S_j = X$, for all j) converges for finite MDP for any initial conditions when the discount factor satisfies $0 < \gamma < 1$. When $S_j = X$, for all j and $\gamma = 1$ an absorbing state is added and a ‘properness’ assumption is needed to guarantee convergence to the optimal value. When a single state is selected for value and policy updates at each step, the algorithm converges, for any choice of initial value, to the optimal cost and policy if each state is selected for update infinitely often. More general algorithms result if value update (11.3.11) is performed multiple times for various choices of S_j prior to a policy improvement. Then, it is required that updates (11.3.11) and (11.3.12) be performed infinitely often for each state, and a monotonicity assumption must be satisfied by the initial starting value.

Considering (11.2.20) as a fixed point equation, VI is based on the associated iterative map (11.3.11), (11.3.12), which can be shown under certain conditions to be a contraction map. In contrast to PI which converges under certain conditions in a finite number of steps, VI generally takes an infinite number of steps to converge (Bertsekas and Tsitsiklis 1996). Consider finite MDP and consider the transition probability graph having probabilities (11.2.2) for the Markov chain corresponding to an optimal policy $\pi^*(x,u)$. If this graph is acyclic for some $\pi^*(x,u)$, then VI converges in at most N steps when initialized with a large value.
Estimate for the future stage cost-to-go

Compare Value Iteration

$$V_{j+1}(x) = \sum_u \pi_j(x,u) \sum_{x'} P_{xx'}^{u} \left[R_{xx'}^{u} + \gamma V_j(x') \right]$$

To Dynamic Programming

$$V^\pi_k(x) = \sum_u \pi(x,u) \sum_{x'} P_{xx'}^{u} \left[R_{xx'}^{u} + \gamma V^\pi_{k+1}(x') \right].$$

one can interpret $V_j(x')$
as an approximation or estimate for the future stage cost-to-go from the future state x'

1. Apply control action

 - Observe the 1-step reward r_k
 - Compute current estimate of future value of next state x_{k+1}
 $$\gamma V^\pi(x_{k+1})$$
 - Compute predicted value of current state x_k
 $$V^\pi(x_k)$$

2. Update predicted value to satisfy the Bellman equation

 $$V^\pi(x_k) = r_k + \gamma V^\pi(x_{k+1})$$

3. Improve control action
Example 11.3-2: Deterministic Shortest Path Problems: the Bellman Ford Algorithm

A special case of finite MDP are the shortest path problems (Bertsekas and Tsitsiklis 1996) which are undiscounted $\gamma = 1$, and have a cost-free termination or absorbing state. These effectively have the time horizon T finite since the number of states is finite. The setup is shown in Figure 11.3-2.

Consider a directed graph $G = (V, E)$ with a nonempty finite set of N nodes $V = \{v_1, \ldots, v_N\}$ and a set of edges or arcs $E \subseteq V \times V$. We assume the graph is simple, that is, it has no repeated edges and $(v_i, v_j) \in E \iff \forall i$ no self loops. Let the edges have weights $e_{i,j} \geq 0$, with $e_{i,j} > 0 \iff (v_i, v_j) \in E$ and $e_{i,j} = 0$ otherwise. Note $e_{ii} = 0$. The set of neighbors of a node v_i is $N_i = \{v_j : (v_i, v_j) \in E\}$, that is, the set of nodes with arcs coming out from v_i.

Consider an agent moving through the graph along edges between nodes. Interpret the control at each node as the decision on which edge to follow leading out of that node. Assume deterministic controls and state transitions. Interpret the edge weights $e_{i,j}$ as deterministic costs incurred by moving along that link. Then, the Value Iteration Algorithm (11.3.14), (11.3.12) in this general digraph is

$$V_i(k + 1) = \min_{j \in N_i}(e_{i,j} + V_j(k)),$$

$$u_i(k + 1) = \arg \min_{j \in N_i}(e_{i,j} + V_j(k)),$$

with k an iteration index. One has changed the notation to conform to existing practice in cooperative control theory. Endow the graph with one node, v_0, which uses as its update law $V_0(k + 1) = V_0(k) = 0$. This corresponds to an absorbing state in MDP parlance. It is interpreted as a node having only incoming edges, none outgoing.

The VI Algorithm in this scenario is nothing but the Bellman-Ford Algorithm, which finds the shortest path from any node in the graph to the absorbing node v_0.

Figure 11.3-2. Sample graph for shortest path routing problem. The absorbing state 0 has only incoming edges. The objective is to find the shortest path from all nodes to node 0 using only local neighborhood computations.
In the terminology of cooperative systems, each node \(v_i \) is endowed with two state variables. The node state variable \(V_i(k) \) keeps track of the value, that is, the shortest path length to node \(v_0 \), while node state variable \(u_i(k) \) keeps track of which direction to follow while leaving the \(i \)-th node in order to follow the shortest path.

The VI update iterations may be performed on all nodes simultaneously. Alternatively, updates may be performed on one state at a time, as in asynchronous VI. With simultaneous updates at all nodes, according to results about VI (Bertsekas and Tsitsiklis 1996) it is known that this algorithm converges to the solution to the shortest path problem in a finite number of steps (less than or equal to \(N \)) if there is a path from every node to node \(v_0 \) and the graph is acyclic. It is known further that the algorithm converges, possibly in an infinite number of iterations, if there are no cycles with net negative gain (that is, the product of gains around the cycle is not negative). With asynchronous updates, the algorithm converges under these connectivity conditions if each node is selected for update infinitely often.

What is a state?

Note that in the terminology of MDP, the nodes are termed states, so that the state space is finite. On the other hand, in the terminology of feedback control systems theory, the state (variable) of each node is \(V_i(m) \), which is a real number so that the state-space is continuous.
Example 11.3-3: Cooperative Control System

Consider the directed graph $G=(V, E)$ with N nodes $V = \{v_1, \ldots, v_N\}$ and edge weights $a_{ij} \geq 0$, with $a_{ij} > 0$ if $(v_i, v_j) \in E$ and $a_{ij} = 0$ otherwise. The set of neighbors of a node v_i is $N_i = \{v_j : (v_i, v_j) \in E\}$, that is, the set of nodes with arcs coming out from v_i. Define the out-degree of node i in graph G as $d_i = \sum_{j \in N_i} a_{ij}$. Figure 11.3-3 shows a representative graph topology.

![Graph](image)

Figure 11.3-3. Cooperative control of multiple systems linked by a communication graph structure. The objective is for all nodes to reach consensus to the value of control node 0 by using only local neighborhood communication. (a) Representative graph structure. (b) Local neighborhood of node i. Each node has edges incoming and outgoing. The outgoing edges show the states reached from node i in one step.

On the graph G, define a MDP that has a stochastic policy $\pi(v_i, u_{ij}) = \Pr[u_y | v_i]$ where u_{ij} means the control action that takes the MDP from node v_i to node v_j. Let the transition probabilities be deterministic. Endow the graph with one absorbing node v_0 that is connected to a few of the existing nodes. If there is an edge from node v_i to node v_0, define $b_i = e_i$ as its edge weight. Let actions u_{ij} have probabilities $u_{ii} = 1 / (1 + d_i + b_i)$, $u_{ij} = e_i / (1 + d_i + b_i)$, that is, the MDP may return to the same state in one step. Let the stage costs all be zero. Then, the Bellman equation (11.2.17) is

$$V_i = \frac{1}{1 + d_i + b_i} \left[V_i + \sum_{j \in N_i} a_{ij} V_j + b_i V_0 \right].$$ \hspace{1cm} (11.3.19)

where V_i is the value of node v_i. This is a set of N simultaneous equations in the values V_i, $i = 1, N$ of the nodes.

Iterative policy evaluation (11.3.6) can be used to solve this set of equations. The iterative policy evaluation algorithm is written here as

$$V_i(k + 1) = \frac{1}{1 + d_i + b_i} \left[V_i(k) + \sum_{j \in N_i} a_{ij} V_j(k) + b_i V_0 \right].$$ \hspace{1cm} (11.3.20)
with k the iteration index, which can be thought of here as a time index. Node v_0 keeps its value constant at V_0.

The updates in (11.3.20) may be done simultaneously at all nodes. Then the theory of MDP shows that it is guaranteed to converge to the solution of the set of equations (11.3.19). Alternatively, one may use the theory of asynchronous VI or generalized PI to motivate other update schemes. For instance, if only one node is updated at each value of k, the theory of MDP shows that the algorithm still converges as long as each node is selected for update infinitely often.

Algorithm (11.3.20) can be written as the local control protocol

$$V'_i(k+1) = V'_i(k) + \frac{1}{1+d_i+b_i} \left[\sum_{v \in V} e_{ij}(V'_j(k) - V'_i(k)) + b_i (V'_0 - V'_i(k)) \right].$$

(11.3.21)

On convergence $V'_i(k+1) = V'_i(k)$ so that the term in square brackets converges to zero. Assuming all nodes have a path to the absorbing node v_0, it is easy to show that this guarantees that $\|V'_j(k) - V'_i(k)\| \to 0$, $\|V'_0 - V'_i(k)\| \to 0$, for all i, j, that is, all nodes reach the same consensus value, namely the value of the absorbing node (Jadbabaie et al. 2003, Olfati-Saber and Murray 2004).

The term in square brackets in (11.3.21) is known as the temporal difference error for this MDP.

Routing Graph vs. Control Graph

The graphs used in routing problems have edges from node i to node j if the transition probabilities (11.2.2) in the MDP using a fixed policy $\pi(x_i, u)$, namely $P_{x_i, x_j} = \sum_u \pi(x_i, u) P_{x_i, x_j}^u$, are nonzero. The edge weights are taken as $e_{ij} = P_{ij}$. Then, e_{ij} is nonzero if there is an edge coming out of node i to node j. By contrast, the edge weights a_{ij} for graphs in cooperative control problems are generally taken as nonzero if there is an edge coming in from node j to node i, that is, $a_{ij} > 0$ iff $(v_j, v_i) \in E$. This is interpreted to mean that information from node j is available to node i for its decision process in computing its control input.

It is convenient to think of the former as motion or routing graphs, and the latter as information flow or decision & control graphs. In fact, the routing graph is the reverse of the decision graph. The reverse graph of a given graph $G = (V, E)$ is the graph with the same node set, but all edges reversed. Note that the Bellman-Ford protocols (11.3.17), (11.3.18) assume that node i gets information from its neighbor node j, but that the shortest path problem is in fact solved for motion in the reverse graph having edges e_{ij}.

Define the matrix of transition probabilities $P = [P_{ij}]$ and the adjacency matrix $A = [a_{ij}]$. Then $A = P^T$.

■
Example 11.3-4: Policy Iteration and Value Iteration for the DT LQR

1. Policy Iteration: Hewer’s Algorithm

Value Update

\[V^{j+1}(x_k) = \frac{1}{2} \left(x_k^T Q x_k + u_k^T R u_k \right) + V^{j+1}(x_{k+1}) , \]

\[x_k^T P^{j+1} x_k = x_k^T Q x_k + u_k^T R u_k + x_{k+1}^T P^{j+1} x_{k+1} , \]

\[0 = (A - BK^j)^T P^{j+1} (A - BK^j) - P^{j+1} + Q + (K^j)^T R K^j . \]

Policy Improvement

\[\mu^{j+1}(x_k) = K^{j+1} x_k = \arg \min (x_k^T Q x_k + u_k^T R u_k + x_{k+1}^T P^{j+1} x_{k+1}) , \]

\[K^{j+1} = -(B^T P^{j+1} B + R)^{-1} B^T P^{j+1} A . \]

2. Value Iteration: Lyapunov recursions

\[V_{j+1}(x) = \sum_u \pi_j(x,u) \sum_{x'} P_{xx'} \left[R_{xx'} + \gamma V_j(x') \right] \]

\[x_k^T P^{j+1} x_k = x_k^T Q x_k + u_k^T R u_k + x_{k+1}^T P^{j+1} x_{k+1} , \]

\[P^{j+1} = (A - BK^j)^T P^j (A - BK^j) + Q + (K^j)^T R K^j . \]

3. Iterative Policy Evaluation

\[P^{j+1} = (A - BK)^T P^j (A - BK) + Q + K^T R K . \]

All algorithms have a model-free scalar form based on measuring states, and a model-based matrix form based on cancelling states.
Generalized Policy Iteration

Start with initial policy \(\pi_0(x,u) \)

Policy update iterations. Set \(V_j^0(x) = V_{j-1}(x) \)

\[
V_{j+1}^i(x) = \sum_u \pi_j(x,u) \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V_j^i(x') \right], \quad i = 1, 2, \ldots \quad \text{for all } x \in X .
\]

Policy Improvement

\[
\pi_{j+1}(x,u) = \arg \min_u \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V_j(x') \right] \quad \text{for all } x \in X .
\]

Policy iteration value update

\[
V_j(x) = \sum_u \pi_j(x,u) \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \gamma V_j(x') \right] \quad \text{for all } x \in X . \quad \text{N simultaneous linear equations}
\]

GPI

If \(i=1 \), one policy update iteration. Same as value iteration

As \(i \) gets large, GPI is same as policy iteration
Methods for Implementing PI and VI

Exact Computation. Model-Based.

All transition probabilities are available to solve the Bellman equation

\[V^\pi(x) = \sum_u \pi(x,u) \sum_{x'} P^u_{xx'} \left[R^u_{xx'} + \gamma V^\pi(x') \right]. \]

Monte Carlo Learning. Model-Free. Episodic tasks.

Approximate the value function

\[V^\pi(x) = E_\pi \left\{ J_k \mid x_k = x \right\} = E_\pi \left\{ \sum_{i=k}^\infty \gamma^{i-k} r_i \mid x_k = x \right\}. \]

by repeated trials along sample paths until termination.
At termination, update all the states through which the path passed.

For finite MDP, Montecarlo converges to the true value function if all states are visited infinitely often.

Problem of maintaining *Exploration. Method of Exploring Starts.*

Example 4.1 Consider the 4 × 4 gridworld shown below.

![Example 4.1 Gridworld](image)

Related to Iterative Learning Control
Temporal Difference Learning (TDL) Along State Trajectories

Real-Time online

Can be model-free or partially model-free

Stochastic approximation techniques

Can write Bellman equation as

\[V^\pi(x_k) = E_\pi \{ r_k \mid x_k \} + \gamma E_\pi \{ V^\pi(x_{k+1}) \mid x_k \} . \]

Evaluate along a sample path.

Deterministic Bellman eq

\[V^\pi(x_k) = r_k + \gamma V^\pi(x_{k+1}) , \]

Temporal Difference Error

\[e_k = -V^\pi(x_k) + r_k + \gamma V^\pi(x_{k+1}) , \]

Measure the data set \((x_k, u_k, r_k, x_{k+1})\)
Discrete-Time Optimal Adaptive Control

system

\[x_{k+1} = f(x_k) + g(x_k)u_k \]

cost

\[V_h(x_k) = \sum_{i=k}^{\infty} \gamma^{i-k} r(x_i, u_i) \]

Example

\[r(x_k, u_k) = x_k^T Q x_k + u_k^T R u_k \]

Difference eq equivalent

\[V_h(x_k) = r(x_k, u_k) + \gamma \sum_{i=k+1}^{\infty} \gamma^{i-(k+1)} r(x_i, u_i) \]

Bellman equation

\[V_h(x_k) = r(x_k, h(x_k)) + \gamma V_h(x_{k+1}) , \quad V_h(0) = 0 \]

\[V_h(x_k) = x_k^T Q x_k + u_k^T R u_k + \gamma V_h(x_{k+1}) \]

Temporal difference (TD) error

\[e_k = x_k^T Q x_k + u_k^T R u_k + \gamma V_h(x_{k+1}) - V_h(x_k) \]

Control policy

\[u_k = h(x_k) = \text{the prescribed control input function} \]

Example

\[u_k = -Kx_k \]

Linear state variable feedback
Discrete-Time Optimal Adaptive Control

value \(V_h(x_k) = \sum_{i=k}^{\infty} \gamma^{i-k} r(x_i, u_i) \)

Bellman Equation \(V_h(x_k) = r(x_k, h(x_k)) + \gamma V_h(x_{k+1}) \)

\(u_k = h(x_k) \) is the prescribed control policy

Hamiltonian \(H(x_k, \nabla V(x_k), h) = r(x_k, h(x_k)) + \gamma V_h(x_{k+1}) - V_h(x_k) \)

The Bellman eq is \(H(x_k, \nabla V(x_k), h) = 0 \)

Optimal cost \(V^*(x_k) = \min_h (r(x_k, h(x_k)) + \gamma V_h(x_{k+1})) \)

Bellman’s Principle gives Bellman opt. eq= DT HJB

\(V^*(x_k) = \min_{u_k} (r(x_k, u_k) + \gamma V^*(x_{k+1})) \)

Dynamic programming- Backwards in time solution

Optimal Control

\(h^*(x_k) = \arg \min_{u_k} (r(x_k, u_k) + \gamma V^*(x_{k+1})) \)

\(u^*(x_k) = -\frac{1}{2} R^{-1} g(x_k)^T \frac{\partial V^*(x_{k+1})}{\partial x_{k+1}} \)
The Solution: Hamilton-Jacobi-Bellman Equation

System

\[x_{k+1} = f(x_k) + g(x_k)u_k \]

\[V(x_k) = \sum_{i=k}^{\infty} x_i^T Qx_i + u_i^T Ru_i \]

Bellman opt eq = DT HJB equation

\[V^*(x_k) = \min_{u_k} \left[x_k^T Qx_k + u_k^T Ru_k + V^*(x_{k+1}) \right] \]

\[= \min_{u_k} \left[x_k^T Qx_k + u_k^T Ru_k + V^* \left(f(x_k) + g(x_k)u_k \right) \right] \]

Minimize wrt \(u_k \)

\[2Ru_k + g(x_k)^T \frac{dV^*(x_{k+1})}{dx_{k+1}} = 0 \]

\[u^*(x_k) = -\frac{1}{2} R^{-1} g(x_k)^T \frac{\partial V^*(x_{k+1})}{\partial x_{k+1}} \]

Offline solution
Difficult to solve
Contains the dynamics
DT Optimal Control – Linear Systems Quadratic cost (LQR)

system
\[x_{k+1} = Ax_k + Bu_k \]

cost
\[V(x_k) = \sum_{i=k}^{\infty} x_i^T Q x_i + u_i^T R u_i \]

Fact. The cost is quadratic \(V(x_k) = x_k^T P x_k \) for some symmetric matrix P

HJB = DT Riccati equation
\[0 = A^T PA - P + Q - A^T PB (R + B^T PB)^{-1} B^T PA \]

Optimal Control \(u_k = -L x_k \)

\[L = (R + B^T PB)^{-1} B^T PA \]

Optimal Cost
\[V^*(x_k) = x_k^T P x_k \]

Off-line solution
Dynamics must be known
DT Policy Iteration

Cost for any given control policy $h(x_k)$ satisfies the recursion

$$V_h(x_k) = r(x_k, h(x_k)) + \gamma V_h(x_{k+1})$$

Bellman eq.

Recursive solution - Actor/Critic Structure

Pick stabilizing initial control

Policy Evaluation

$$V_{j+1}(x_k) = r(x_k, h_j(x_k)) + \gamma V_{j+1}(x_{k+1})$$

f(.) and g(.) do not appear

Policy Improvement

$$h_{j+1}(x_{k+1}) = \arg \min_{u_k} (r(x_k, u_k) + \gamma V_{j+1}(x_{k+1}))$$

Howard (1960) proved convergence for MDP

Temporal difference

$$e_k = -V_{j+1}(x_k) + r(x_k, h_j(x_k)) + \gamma V_{j+1}(x_{k+1})$$

e.g. Control policy = SVFB

$$h(x_k) = -Lx_k$$
DT Policy Iteration – Linear Systems Quadratic Cost - LQR

\[x_{k+1} = Ax_k + Bu_k = (A - BL)x_k, \quad u_k = -Lx_k \]

For any stabilizing policy, the cost is

\[V(x_k) = \sum_{i=k}^{\infty} x_i^T Q x_i + u_i^T R u_i(x_i) \]

LQR value is quadratic

\[V(x) = x^T P x \]

DT Policy iterations

\[V_{j+1}(x_k) = x_k^T Q x_k + u_j^T(x_k) R u_j(x_k) + V_{j+1}(x_{k+1}) \]

\[u_{j+1}(x_{k+1}) = -\frac{1}{2} R^{-1} g(x_k)^T \frac{dV_{j+1}(x_{k+1})}{dx_{k+1}} \]

Equivalent to an Underlying Problem - DT LQR:

\[(A - BL_j)^T P_{j+1}(A - BL_j) - P_{j+1} = -Q - L_j^T R L_j \]

\[L_{j+1} = (R + B^T P_{j+1} B)^{-1} B^T P_{j+1} A \]

Hewer proved convergence in 1971

Policy Iteration Solves Lyapunov equation WITHOUT knowing System Dynamics
DT Policy Iterations

\[V_{j+1}(x_k) = x_k^T Q x_k + u_j^T(x_k) R u_j(x_k) + V_{j+1}(x_{k+1}) \]

\[u_{j+1}(x_{k+1}) = -\frac{1}{2} R^{-1} g(x_k)^T \frac{dV_{j+1}(x_{k+1})}{dx_{k+1}} \]

How to implement online?
DT Policy Iteration – How to implement online?
Linear Systems Quadratic Cost- LQR

\[x_{k+1} = Ax_k + Bu_k \]

\[V(x_k) = \sum_{i=k}^{\infty} x_i^T Q x_i + u(x_i) R u(x_i) \]

LQR cost is quadratic \[V(x) = x^T P x \] for some matrix P

DT Policy iterations

\[V_{j+1}(x_k) = x_k^T Q x_k + u_j^T (x_k) R u_j (x_k) + V_{j+1}(x_{k+1}) \]

\[x_k^T P_{j+1} x_k - x_{k+1}^T P_{j+1} x_{k+1} = x_k^T Q x_k + u_j^T R u_j \]

\[\begin{bmatrix} x_k^1 & x_k^2 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} \begin{bmatrix} x_k^1 \\ x_k^2 \end{bmatrix} - \begin{bmatrix} x_{k+1}^1 & x_{k+1}^2 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} \begin{bmatrix} x_{k+1}^1 \\ x_{k+1}^2 \end{bmatrix} \]

\[= \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} \begin{bmatrix} (x_k^1)^2 \\ 2x_k^1 x_k^2 \\ (x_k^2)^2 \end{bmatrix} - \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} \begin{bmatrix} (x_{k+1}^1)^2 \\ 2x_{k+1}^1 x_{k+1}^2 \\ (x_{k+1}^2)^2 \end{bmatrix} \]

\[W_{j+1}^T [\varphi(x_k) - \varphi(x_{k+1})] = x_k^T Q x_k + u_j^T (x_k) R u_j (x_k) \]

Then update control using

\[h_j(x_k) = L_j x_k = (R + B^T P_j B)^{-1} B^T P_j A x_k \]

Solves Lyapunov eq. without knowing A and B

Quadratic basis set

Need to know A AND B for control update
Implementation- DT Policy Iteration
Nonlinear Case

Value Function Approximation (VFA)

\[V(x) = W^T \varphi(x) \]

- **weights**
- **basis functions**

LQR case- \(V(x) \) is quadratic

\[V(x) = x^T Px = W^T \varphi(x) \]

\[\varphi(x) = \left[x_1^2, \ldots, x_1x_n, x_2^2, \ldots, x_2x_n, \ldots, x_n^2 \right]' \]

- Quadratic basis functions

\[W^T = \begin{bmatrix} p_{11} & p_{12} & \cdots \end{bmatrix} \]

Nonlinear system case- use Neural Network
Implementation - DT Policy Iteration

Value function update for given control

\[V_{j+1}(x_k) = r(x_k, h_j(x_k)) + \gamma V_{j+1}(x_{k+1}) \]

Assume measurements of \(x_k \) and \(x_{k+1} \) are available to compute \(u_{k+1} \)

\[V_j(x_k) = W_j^T \varphi(x_k) \]

Then

\[W_{j+1}^T [\varphi(x_k) - \gamma \varphi(x_{k+1})] = r(x_k, h_j(x_k)) \]

Indirect Adaptive control with identification of the optimal value

Solve for weights in real-time using RLS
or, batch LS- many trajectories with different initial conditions over a compact set

Then update control using

\[u_{j+1}(x_{k+1}) = -\frac{1}{2} R^{-1} g(x_k)^T \frac{dV_{j+1}(x_{k+1})}{dx_{k+1}} = -\frac{1}{2} R^{-1} g(x_k)^T \nabla \varphi^T(x_{k+1}) W_{j+1}^T \]

Need to know \(g(x_k) \) for control update
1. Select control policy

2. Find associated cost

\[V_{j+1}(x_k) = r(x_k, h_j(x_k)) + \gamma V_{j+1}(x_{k+1}) \]

\[W_{j+1}^{T}[\varphi(x_k) - \gamma \varphi(x_{k+1})] = r(x_k, h_j(x_k)) \]

3. Improve control

\[u_{j+1}(x_{k+1}) = -\frac{1}{2} R^{-1} g(x_k) \frac{dV_{j}(x_{k+1})}{dx_{k+1}} \]

Needs 10 lines of MATLAB code

Direct optimal adaptive control
Persistence of Excitation

\[W_{j+1}^T \left[\varphi(x_k) - \gamma \varphi(x_{k+1}) \right] = r(x_k, h_j(x_k)) \]

Regression vector must be PE
Adaptive Critics

The Adaptive Critic Architecture

Value update

\[V_{j+1}(x_k) = r(x_k, h_j(x_k)) + \gamma V_{j+1}(x_{k+1}) \]

Control policy update

\[h_{j+1}(x_k) = \underset{u_k}{\text{arg min}} (r(x_k, u_k) + \gamma V_{j+1}(x_{k+1})) \]

System

Policy Evaluation (Critic network)

Action network

Cost

Use RLS until convergence

Leads to ONLINE FORWARD-IN-TIME implementation of optimal control

Optimal Adaptive Control
Adaptive Control

Identify the performance value - Optimal Adaptive

Identify the system model - Indirect Adaptive

Identify the Controller - Direct Adaptive

\[V(x) = W^T \phi(x) \]
Greedy Value Fn. Update- Approximate Dynamic Programming

Value Iteration= Heuristic Dynamic Programming (HDP)

Paul Werbos

Policy Iteration

\[V_{j+1}(x_k) = r(x_k, h_j(x_k)) + \gamma V_{j+1}(x_{k+1}) \]

\[h_{j+1}(x_k) = \text{arg min}_{u_k} (r(x_k, u_k) + \gamma V_{j+1}(x_{k+1})) \]

Lyapunov eq.

For LQR

\[(A - BL_j)^T P_{j+1} (A - BL_j) - P_{j+1} = -Q - L_j^T RL_j \]

Hewer 1971

Underlying RE

Initial stabilizing control is needed

Value Iteration

Two occurrences of cost allows def. of greedy update

\[V_{j+1}(x_k) = r(x_k, h_j(x_k)) + \gamma V_j(x_{k+1}) \]

\[h_{j+1}(x_k) = \text{arg min}_{u_k} (r(x_k, u_k) + \gamma V_{j+1}(x_{k+1})) \]

Simple recursion

For LQR

\[P_{j+1} = (A - BL_j)^T P_{j} (A - BL_j) + Q + L_j^T RL_j \]

Lancaster & Rodman proved convergence

Underlying RE

Initial stabilizing control is NOT needed
Adaptive (Approximate) Dynamic Programming

Four ADP Methods proposed by Paul Werbos

Critic NN to approximate:

Heuristic dynamic programming
Value Iteration
Value \(V(x_k) \)

Dual heuristic programming
Gradient \(\frac{\partial V}{\partial x} \)

AD Heuristic dynamic programming
(Watkins Q Learning)
Q function \(Q(x_k, u_k) \)

AD Dual heuristic programming
Gradients \(\frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial u} \)

Action NN to approximate the Control

Bertsekas- Neurodynamic Programming
Barto & Bradtke- Q-learning proof (Imposed a settling time)
A problem with DT Policy Iteration and VI

Policy Evaluation

Assume measurements of x_k and x_{k+1} are available to compute u_{k+1}

$$V_j(x_k) = W_j^T \varphi(x_k)$$

Then

$$W_{j+1}^T [\varphi(x_k) - \gamma \varphi(x_{k+1})] = r(x_k, h_j(x_k))$$

Since x_{k+1} is measured, do not need knowledge of $f(x)$ or $g(x)$ for value fn. update

Policy Improvement

$$u_{j+1}(x_{k+1}) = -\frac{1}{2} R^{-1} g(x_k)^T \frac{dV_{j+1}(x_{k+1})}{dx_{k+1}}$$

LQR case

$$h_j(x_k) = L_j x_k = (R + B^T P_j B)^{-1} B^T P_j A x_k$$

Need to know $f(x_k)$ AND $g(x_k)$ for control update

Easy to fix – use 2 NN
Standard Neural Network VFA for On-Line Implementation

NN for Value - Critic
\[\hat{V}_i(x_k, W_{Vi}) = W_{Vi}^T \phi(x_k) \]

NN for control action
\[\hat{u}_i(x_k, W_{ui}) = W_{ui}^T \sigma(x_k) \]

(can use 2-layer NN)

HDP
\[V_{i+1}(x_k) = x_k^T Q x_k + u^T R u + V_i(x_{k+1}) \]
\[u_i(x_k) = \arg \min_u (x_k^T Q x_k + u^T R u + V_i(x_{k+1})) \]

Define target cost function
\[d(\phi(x_k), W_{Vi}^T) = x_k^T Q x_k + \hat{u}_i^T(x_k) R \hat{u}_i(x_k) + \hat{V}_i(x_{k+1}) \]
\[= x_k^T Q x_k + \hat{u}_i^T(x_k) R \hat{u}_i(x_k) + W_{Vi}^T \phi(x_{k+1}) \]

Explicit equation for cost – use LS for Critic NN update or RLS
\[W_{Vi+1} = \arg \min_{W_{Vi+1}} \left\{ \int_{0}^{T} |W_{Vi}^T \phi(x_k) - d(\phi(x_k), W_{Vi}^T)|^2 \, dx \right\} \]
\[W_{Vi+1} = \left(\int_{0}^{T} \phi(x_k) \phi(x_k)^T \, dx \right)^{-1} \left(\int_{0}^{T} \phi(x_k) d(\phi(x_k), W_{Vi}^T) \, dx \right) \]

OR
\[W_{Vi+1}\big|_{m+1} = W_{Vi+1}\big|_{m} + \beta \phi(x_k) \left(-W_{Vi+1}\big|_{m} \phi(x_k) + r(x_k, u_k) + W_{Vi} \phi(x_{k+1}) \right) \]

Implicit equation for DT control- use gradient descent for action update
\[W_{ui} = \arg \min_{W} \left\{ x_k^T Q x_k + \hat{u}^T(x_k, W) R \hat{u}(x_k, W) + \hat{V}_i(f(x_k) + g(x_k) \hat{u}(x_k, W)) \right\} \]
\[W_{ui(j+1)} = W_{ui(j)} - \alpha \frac{\partial(x_k^T Q x_k + \hat{u}_{i(j)}^T R \hat{u}_{i(j)} + \hat{V}_i(x_{k+1}))}{\partial W_{ui(j)}} \]
\[W_{ui(j+1)} = W_{ui(j)} - \alpha \sigma(x_k)(2 R \hat{u}_{i(j)} + g(x_k)^T \phi(x_{k+1}) W_{Vi})^T \]

Backpropagation- P. Werbos
Interesting Fact for HDP for Nonlinear systems

Linear Case
\[h_j(x_k) = L_j x_k = -(I + B^T P_j B)^{-1} B^T P_j A x_k \]
must know system A and B matrices

NN for control action
\[\hat{u}_i(x_k, W_{ui}) = W_{ui}^T \sigma(x_k) \]
Information about A is stored in NN

Implicit equation for DT control- use gradient descent for action update
\[
W_{ui} = \arg \min_{\alpha} \left(x_k^T Q x_k + \hat{u}_i^T (x_k, \alpha) R \hat{u}(x_k, \alpha) + \hat{V}_i(x_k) + g(x_k) \hat{u}(x_k, \alpha) \right)_{\Omega}
\]
\[
W_{ui(j+1)} = W_{ui(j)} - \alpha \frac{\partial(x_k^T Q x_k + \hat{u}_i^T (x_k, \alpha) R \hat{u}(x_k, \alpha) + \hat{V}_i(x_k+1))}{\partial W_{ui(j)}}
\]
\[
W_{ui(j+1)} = W_{ui(j)} - \alpha \sigma(x_k) (2 R \hat{u}(x_k, \alpha) + g(x_k) \frac{\partial \phi(x_{k+1})}{\partial x_{k+1}} W_{vi})^T
\]
g(.) is needed

Note that state drift dynamics \(f(x_k) \) is NOT needed since:

1. NN Approximation for action is used
2. \(x_{k+1} \) is measured in training phase
Discrete-time nonlinear HJB solution using Approximate dynamic programming: Convergence Proof

- Simulation Example 1
- Linear system – Aircraft longitudinal dynamics

\[
A = \begin{bmatrix} 1.0722 & 0.0954 & 0 & -0.0541 & -0.0153 \\ 4.1534 & 1.1175 & 0 & -0.8000 & -0.1010 \\ 0.1359 & 0.0071 & 1.0 & 0.0039 & 0.0097 \\ 0 & 0 & 0 & 0.1353 & 0 \\ 0 & 0 & 0 & 0 & 0.1353 \end{bmatrix} \]

\[
B = \begin{bmatrix} 0.0075 \\ 0.0134 \\ 0.8647 \\ 0 \\ 0.8647 \end{bmatrix} \]

Unstable, Two-input system

- The HJB, i.e. ARE, Solution

\[
P = \begin{bmatrix} 55.8348 & 7.6670 & 16.0470 & -4.6754 & -0.7265 \\ 7.6670 & 2.3168 & 1.4987 & -0.8309 & -0.1215 \\ 16.0470 & 1.4987 & 25.3586 & -0.6709 & 0.0464 \\ -4.6754 & -0.8309 & -0.6709 & 1.5394 & 0.0782 \\ -0.7265 & -0.1215 & 0.0464 & 0.0782 & 1.0240 \end{bmatrix} \]

\[
L = \begin{bmatrix} -4.1136 & -0.7170 & -0.3847 & 0.5277 & 0.0707 \\ -0.6315 & -0.1003 & 0.1236 & 0.0653 & 0.0798 \end{bmatrix} \]
Discrete-time nonlinear HJB solution using Approximate dynamic programming : Convergence Proof

• Simulation
 • The Cost function approximation – quadratic basis set

\[\hat{V}_{i+1}(x_k, W_{V_{i+1}}) = W^T_{V_{i+1}} \phi(x_k) \]

\[\phi^T(x) = \left[x_1^2 \ x_1 x_2 \ x_1 x_3 \ x_1 x_4 \ x_1 x_5 \ x_2^2 \ x_2 x_3 \ x_2 x_4 \ x_2 x_5 \ x_3^2 \ x_3 x_4 \ x_3 x_5 \ x_4^2 \ x_4 x_5 \ x_5^2 \right] \]

\[W^T_{V_{i+1}} = \begin{bmatrix} w_{V_{i+1}} & w_{V_{i+2}} & w_{V_{i+3}} & w_{V_{i+4}} & w_{V_{i+5}} & w_{V_{i+6}} & w_{V_{i+7}} & w_{V_{i+8}} & w_{V_{i+9}} & w_{V_{i+10}} & w_{V_{i+11}} & w_{V_{i+12}} & w_{V_{i+13}} & w_{V_{i+14}} & w_{V_{i+15}} \end{bmatrix} \]

• The Policy approximation – linear basis set

\[\hat{u}_i = W^T_{ui} \sigma(x_k) \]

\[\sigma^T(x) = \left[x_1 \ x_2 \ x_3 \ x_4 \ x_5 \right] \]

\[W^T_{u} = \begin{bmatrix} w_{u_{11}} & w_{u_{12}} & w_{u_{13}} & w_{u_{14}} & w_{u_{15}} \\
 w_{u_{21}} & w_{u_{22}} & w_{u_{23}} & w_{u_{24}} & w_{u_{25}} \end{bmatrix} \]
Discrete-time nonlinear HJB solution using Approximate dynamic programming : Convergence Proof

• Simulation

The convergence of the cost

\[
W_T = [55.5411 \ 15.2789 \ 31.3032 \ -9.3255 \ -1.4536 \ 2.3142 \ 2.9234 \ -1.6594 \ -0.2430 \ 24.8262 \ -1.3076 \ 0.0920 \ 1.5388 \ 0.1564 \ 1.0240]
\]

\[
\begin{bmatrix}
 P_{11} & P_{12} & P_{13} & P_{14} & P_{15} \\
 P_{21} & P_{22} & P_{23} & P_{24} & P_{25} \\
 P_{31} & P_{32} & P_{33} & P_{34} & P_{35} \\
 P_{41} & P_{42} & P_{43} & P_{44} & P_{45} \\
 P_{51} & P_{52} & P_{53} & P_{54} & P_{55}
\end{bmatrix}
= \begin{bmatrix}
w_{y_1} & 0.5w_{y_2} & 0.5w_{y_3} & 0.5w_{y_4} & 0.5w_{y_5} \\
0.5w_{y_2} & w_{y_6} & 0.5w_{y_7} & 0.5w_{y_8} & 0.5w_{y_9} \\
0.5w_{y_3} & 0.5w_{y_7} & w_{y_{10}} & 0.5w_{y_{11}} & 0.5w_{y_{12}} \\
0.5w_{y_4} & 0.5w_{y_8} & 0.5w_{y_{11}} & w_{y_{13}} & 0.5w_{y_{14}} \\
0.5w_{y_5} & 0.5w_{y_9} & 0.5w_{y_{12}} & 0.5w_{y_{14}} & w_{y_{15}}
\end{bmatrix}
\]

Actual ARE soln:

\[
P = \begin{bmatrix}
 55.8348 & 7.6670 & 16.0470 & -4.6754 & -0.7265 \\
 7.6670 & 2.3168 & 1.4987 & -0.8309 & -0.1215 \\
 16.0470 & 1.4987 & 25.3586 & -0.6709 & 0.0464 \\
 -4.6754 & -0.8309 & -0.6709 & 1.5394 & 0.0782 \\
 -0.7265 & -0.1215 & 0.0464 & 0.0782 & 1.0240
\end{bmatrix}
\]
Discrete-time nonlinear HJB solution using Approximate dynamic programming: Convergence Proof

- Simulation
 The convergence of the control policy

\[
W_u = \begin{bmatrix}
4.1068 & 0.7164 & 0.3756 & -0.5274 & -0.0707 \\
0.6330 & 0.1005 & -0.1216 & -0.0653 & -0.0798 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
L_{11} & L_{12} & L_{13} & L_{14} & L_{15} \\
L_{21} & L_{22} & L_{23} & L_{24} & L_{25} \\
\end{bmatrix} = - \begin{bmatrix}
w_{u11} & w_{u12} & w_{u13} & w_{u14} & w_{u15} \\
w_{u21} & w_{u22} & w_{u23} & w_{u24} & w_{u25} \\
\end{bmatrix}
\]

Actual optimal ctrl.

\[
L = \begin{bmatrix}
-4.1136 & -0.7170 & -0.3847 & 0.5277 & 0.0707 \\
-0.6315 & -0.1003 & 0.1236 & 0.0653 & 0.0798 \\
\end{bmatrix}
\]

Note- In this example, drift dynamics matrix A is NOT Needed. Riccati equation solved online without knowing A matrix.
Issues with Nonlinear ADP

LS solution for Critic NN update

Selection of NN Training Set

\[
W_{Vi+1} = \left(\int_{\Omega} \phi(x_k)\phi(x_k)^T \, dx \right)^{-1} \int_{\Omega} \phi(x_k)d^T(\phi(x_k),W_{Vi},W_{Vi}^T) \, dx
\]

\[
W_{Vi+1}\big|_{m+1} = W_{Vi+1}\big|_{m} + \beta \phi^T(x_k)\left(-W_{Vi+1}\big|_{m} \phi(x_k) + r(x_k,u_k) + W_{Vi}^T \phi(x_{k+1})\right)
\]

Integral over a region of state-space
Approximate using a set of points

Batch LS

Recursive Least-Squares RLS

Take sample points along a single trajectory

Set of points over a region vs. points along a trajectory
For Linear systems- these are the same under PE condition

Exploitation (optimal regulation) vs Exploration

PE allows local smooth solution of Bellman eq.
Q Learning - Action Dependent ADP

Value function recursion for given policy $h(x_k)$

$$V_h(x_k) = r(x_k, h(x_k)) + \gamma V_h(x_{k+1})$$

Define Q function

$$Q_h(x_k, u_k) = r(x_k, u_k) + \gamma V_h(x_{k+1})$$

Note $Q_h(x_k, h(x_k)) = V_h(x_k)$

Recursion for Q

$$Q_h(x_k, u_k) = r(x_k, u_k) + \gamma Q_h(x_{k+1}, h(x_{k+1}))$$

Simple expression of Bellman’s principle

$$V^*(x_k) = \min_{u_k}(Q^*(x_k, u_k))$$
$$h^*(x_k) = \arg\min_{u_k}(Q^*(x_k, u_k))$$

Optimal Adaptive Control for completely unknown DT systems
Q Function Definition

Specify a control policy \(u_j = h(x_j); \quad j = k, k+1, \ldots \)

Define Q function
\[
Q_h(x_k, u_k) = r(x_k, u_k) + \gamma V_h(x_{k+1})
\]
\[\quad \begin{cases}
 u_k \text{ arbitrary} \\
 \text{policy } h(.) \text{ used after time } k
\end{cases}\]

Note \(Q_h(x_k, h(x_k)) = V_h(x_k) \)

Bellman equation for Q
\[
Q_h(x_k, u_k) = r(x_k, u_k) + \gamma Q_h(x_{k+1}, h(x_{k+1}))
\]

Optimal Q function
\[
Q^*(x_k, u_k) = r(x_k, u_k) + \gamma V^*(x_{k+1})
\]
\[
Q^*(x_k, u_k) = r(x_k, u_k) + \gamma Q^*(x_{k+1}, h^*(x_{k+1}))
\]

Optimal control solution
\[
V^*(x_k) = Q^*(x_k, h^*(x_k)) = \min_h Q_h(x_k, h(x_k)) \quad h^*(x_k) = \arg \min_h Q_h(x_k, h(x_k))
\]

Simple expression of Bellman’s principle
\[
V^*(x_k) = \min_{u_k}(Q^*(x_k, u_k)) \quad h^*(x_k) = \arg \min_{u_k} Q^*(x_k, u_k)
\]
Q Function HDP – Action Dependent HDP

Q function for any given control policy $h(x_k)$ satisfies the Bellman equation

$$Q_h(x_k, u_k) = r(x_k, u_k) + \gamma Q_h(x_{k+1}, h(x_{k+1}))$$

Recursive solution

Pick stabilizing initial control policy

Find Q function

$$Q_{j+1}(x_k, u_k) = r(x_k, u_k) + \gamma Q_j(x_{k+1}, h_j(x_{k+1}))$$

Update control

$$h_{j+1}(x_k) = \arg\min_{u_k} (Q_{j+1}(x_k, u_k))$$

Now $f(x_k, u_k)$ not needed

Bradtke & Barto (1994) proved convergence for LQR
Q Learning does not need to know $f(x_k)$ or $g(x_k)$

For LQR

\[V(x) = W^T \varphi(x) = x^T Px \]

\(V \) is quadratic in \(x \)

\[
Q_h(x_k, u_k) = r(x_k, u_k) + V_h(x_{k+1})
= x_k^T Q x_k + u_k^T R u_k + (Ax_k + Bu_k)^T P (Ax_k + Bu_k)
= \begin{bmatrix} x_k \\ u_k \end{bmatrix}^T \begin{bmatrix} Q + A^T PA & A^T PB \\ B^T PA & R + B^T PB \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} = \begin{bmatrix} x_k \\ u_k \end{bmatrix}^T H \begin{bmatrix} x_k \\ u_k \end{bmatrix} = \begin{bmatrix} x_k \\ u_k \end{bmatrix}^T \begin{bmatrix} H_{xx} & H_{xu} \\ H_{ux} & H_{uu} \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix}
\]

\(Q \) is quadratic in \(x \) and \(u \)

Control update is found by

\[
0 = \frac{\partial Q}{\partial u_k} = 2[B^T PA x_k + (R + B^T PB) u_k] = 2[H_{ux} x_k + H_{uu} u_k]
\]

\(u_k = -(R + B^T PB)^{-1} B^T PA x_k = -H_{uu}^{-1} H_{ux} x_k = L_{j+1} x_k
\)

Control found only from \(Q \) function

A and B not needed
Implementation- DT Q Function Policy Iteration

For LQR

Q function update for control \(u_k = L_j x_k \) is given by

\[
Q_{j+1}(x_k, u_k) = r(x_k, u_k) + \gamma Q_{j+1}(x_{k+1}, L_j x_{k+1})
\]

Assume measurements of \(u_k, x_k \) and \(x_{k+1} \) are available to compute \(u_{k+1} \)

QFA – Q Fn. Approximation

\[
Q(x, u) = W^T \phi(x, u)
\]

Now \(u \) is an input to the NN- Werbos- Action dependent NN

\[
W_{j+1}^T[\phi(x_k, u_k) - \gamma \phi(x_{k+1}, L_j x_{k+1})] = r(x_k, L_j x_k)
\]

Solve for weights using RLS or backprop.

For LQR case

\[
\phi(x) = [x_1^2, \ldots, x_1 x_n, x_2^2, \ldots, x_2 x_n, \ldots, x_n^2]^T.
\]
Model-free policy iteration

Q Policy Iteration

\[Q_{j+1}(x_k, u_k) = r(x_k, u_k) + \gamma Q_{j+1}(x_{k+1}, L_j x_{k+1}) \]

Bradtke, Ydstie, Barto

\[W_{j+1}^T [\phi(x_k, u_k) - \gamma \phi(x_{k+1}, L_j x_{k+1})] = r(x_k, L_j x_k) \]

Control policy update

Stable initial control needed

\[h_{j+1}(x_k) = \arg \min_{u_k}(Q_{j+1}(x_k, u_k)) \quad u_k = -H_{uu}^{-1} H_{ux} x_k = L_{j+1} x_k \]

Greedy Q Fn. Update - Approximate Dynamic Programming

ADP Method 3. Q Learning

Action-Dependent Heuristic Dynamic Programming (ADHDP)

Greedy Q Update

Model-free HDP

\[Q_{j+1}(x_k, u_k) = r(x_k, u_k) + \gamma Q_{j}(x_{k+1}, h_j(x_{k+1})) \]

Paul Werbos

\[W_{j+1}^T \phi(x_k, u_k) = r(x_k, L_j x_k) + W_j^T \gamma \phi(x_{k+1}, L_j x_{k+1}) \equiv \text{target}_{j+1} \]

Stable initial control \textit{NOT} needed

Update weights by RLS or backprop.
Q learning actually solves the Riccati Equation WITHOUT knowing the plant dynamics

Model-free ADP

Direct OPTIMAL ADAPTIVE CONTROL

Works for Nonlinear Systems

Proofs?
Robustness?
Comparison with adaptive control methods?