Capstone Research Project Report Specifications

The following is a detailed explanation of the structure and format of the technical report.

Cover Sheet
Title of Project
Author(s) of Project
Course Number, Course Title
Lab Teaching Assistant
Project Supervisor (Course Instructor)
Date

Report Summary (about 1 page)
The report summary is a 1-page summary of the entire report. It should contain all of the major points and the following organization is suggested:

Foreword
- Give the problem statement including the organizational problem, (the purpose of capstone Projects, the context of your particular project) and the general technical problem (the type of project are you doing (software prototype, hardware prototype, simulation, application program for a client, etc)).
- Give a more specific assignment statement - an overview of the project goals, the technical questions, task, and perhaps the hypothesis or solution.
- State the overall purpose of the report.

Summary
- Provide the objective and background (how problem was approached, what were the results) including objective or hypothesis, methodology or experimental procedure and results.
- Give overall conclusions about project including recommendations for improvements and their implications, subsequent action, and cost and benefits.

Table of contents (with page numbers)

Table of figures and tables (with page numbers)

Introduction (about 2 or 4 pages)
The introduction should orient the reader to the topic of the report by including the following:

The problem - Explain the particular problem that is addressed in the report.
The objective - State the assignment (what your project needs to accomplish to solve the problem).
The method of the report - Describe the organization and structure of the report.
The formulation – Formulate the problem and give a mathematical description (e.g. force body diagram of a mechanical system, dynamics of a chemical plant etc.).

Background (3-6 pages)
Discuss the context and history of this general topic and describe what has been done in the past.
Answer the question: What are the most important issues for this topic in terms of the goals of the project and the effects on society? Write about the following issues:
- economic: effect of this topic on the economy in the past, possible cost of project development, cost of materials, target cost if project is marketed.
- environmental: influence on the environment in the past, possible effects for future developments
- sustainability: product life cycle, future markets
- manufacturability: material availability, use of off the shelf versus custom components, special needs for hostile environments
important points:

- ethical: uses that could cause harm to society, ethical issues that someone working on this topic might encounter
- health and safety: positive or negative impacts on the health and safety of individuals or society for past or future applications in this topic.
- social: relationship of this topic to social aspects of society such as education, culture, communication, entertainment.

Previous work - Explain what already has been done on this topic. Include literature search results for the OVERALL problem and context rather than the options for component parts here.

Design Requirements (3 to 6 pages)
Specifications and requirements for the project

Give the detailed specifications that served as the basis for the project (interpretation of rules of a contest, interpretation of customer requirements, interpretation of desired features – how they determine or constrain size, velocity, response time, cost, weight, etc.) Consider aspects such as potential users, cost, safety, user-friendliness, performance, compatibility with other components, functionality, acceptance, convenience, capacity, misuses, legal issues, standards or codes, availability, materials, productivity enhancement, entertainment, technology, and design methods.

Functional decomposition of the project - Explain the major functions required by your design. Figures and tables should be used to supplement discussion.

Selection of design criterion - Based on your specification, specify goals for performance, reliability, cost, code size, manufacturability, safety, societal factors (human interface, environmental factors, etc) and any other criteria relevant to the project.

Feasibility Discussion (2-5 pages)
Results of literature search - Provide the options and justification for overall approach (hardware, software, choices of methods).
Options and justification for each functional part - Provide the options and justification of design approach and components or methods used in each functional part.
Be sure to cite all of the literature used in your discussion.

Final Implementation (5-15 pages)
Describe the project and its functions (include diagrams, code examples, and other figures in the body of the text and refer to any large engineering drawings, listings, etc. in the appendices in the body of the text). Discuss the problems that appeared during the design and implementation phases. Organize the implementation presentation by functional groups. Discuss and present the calculations used in the design of the project in the relevant subsections. Summarize repetitive calculations in tables.

Discussion, Conclusions, and Recommendations (2-4 pages)
Restate the problem that gave rise to the report.
Summarize the main points and the approach that was taken. Summarize the design performance. Provide recommendations, explaining subsequent action or posing specific questions for investigations. Discuss the lessons learned.

References
Give a bibliography listing all references used for background work, the specification of parts, cost comparisons, etc.

Appendices
Put oversized drawings and long programs here.
General Report Guidelines

General Guidelines
The manuscript must be typed in Times New Roman font size 10, single column, single space, follow the margins of this document.
Be sure to introduce and summarize each section.
Always write general to specific in each section.
Do not write chronologically (a technical report is not a story or novel).
Use section and subsection titles.
Make sure that subsections follow each other in a logical progression.
Number each page.
Use bulleted or enumerated lists rather than lengthy textual discussion of requirements, subsystems, etc.

Figures and Tables
Technical reports only contain Figures and Tables.
Refer to graphs as figures, photos as figures, small code segments as figures, etc.
Figures and tables should NOT be hand sketched.
Figures and tables should be used to supplement the discussion.
Always introduce a figure or table in the text and never place a figure or table in the text that is not discussed.
Discuss the meaning and significance of the table or figure.
Be sure to highlight the fine points and structure.
Figures and tables should be located in the body of the text. AFTER they are introduced in the text.
It is often appropriate to pull out small segments of code from a main program or to write pseudocode to describe an algorithm or major point of the project. This is considered a figure and should be titled and numbered as such.
If a group of figures or a long table or code listing takes up too much space, locate them in an appendix.
Figures and tables can be located at the end of the text but it is less convenient for the reader.

Figure titles and numbering
Figures should be numbered consecutively in the report.
Every figure must have a descriptive title located immediately below the figure.

Table titles and numbers
Tables should be numbered consecutively in the report.
Every table must have a descriptive title located above or below the table.

References
All references should include author, title, journal or magazine title (if a journal article), publisher, page number, date. Below are sample references from a conference proceeding paper [1], book [2], journal article [3], Ph.D. Dissertation [4], technical specification [5] and web page.

Final Presentation (Power Point 20 slides – 20 min presentation in class)

Presentation of final implementation will be given in class; print handouts to be distributed in the class. Describe the project and its functions (include diagrams, code examples, and other figures in the body of the text and refer to any large engineering drawings, listings, etc. in the appendices in the body of the text). Organize the implementation presentation by functional groups (team members). Discuss and present the calculations used in the design of the project in the relevant subsections. Summarize repetitive calculations in tables.

Discuss the phases of the design and implementation of your project show team member contribution. Recommend any improvements that could have been made in the scheduling and planning.

Grading of the Project Report:
1. (10%) Adherence to the report format (ABET outcome g).
2. (10%) Identification and formulation of the problem (ABET outcome e).
3. (10%) Background (ABET outcome h).
4. (10%) Ethical issues (ABET outcome f).
5. (10%) Design requirements (ABET outcome c).
6. (10%) Feasibility discussion (ABET outcome i).
7. (40%) Final Implementation discussion (ABET outcome e).

Grading of the Presentation:
8. Final Presentation (ABET outcome g).

Grading as a team member:
9. Evaluation as a team member will be based on presentation and weekly auto-evaluation reports (ABET outcome d).