15 WIENER FILTERING

The covariance of the predicted noise is

\[\Lambda + X_e \Theta = Z \]

so that

\[AS = \Lambda \]

\[HS = -\Theta \]

\[ZS = Z \]

and define new quantities by

\[AS + XH = ZS \]

Now proceed to solve for \(X_e \) to obtain

\[X_e = \Theta S^{-1} (A - ZS) \]

Recall that the solution for \(X_e \) is

\[X_e = X_0 + \Theta S^{-1} (A - ZS) \]

where \(X_0 \) is the initial estimate. The addition to the covariance matrix is

\[\Delta \Lambda = \Theta S^{-1} (A - ZS) (A - ZS) \]

This is the covariance update. To find a more familiar form for this update,

\[\Delta \Lambda = \Theta S^{-1} (A - ZS) (A - ZS) \]

This is equivalent to

\[\Delta \Lambda = \Theta S^{-1} (A - ZS) (A - ZS) \]

This is the final result. The Wiener filter has been derived.
Suppose that \(x(t) \) is a non-deterministic, and hence on the whole, it is desired to reconstruct
\(x(t) \) is measured, and based on this data, it is desired to reconstruct:

The Linear Estimation Problem

Special Cases:
- When the process of measurement is continuous, the vector function \(\phi(t) \) can be replaced by \(\phi(t) \).

\[
\begin{align*}
I + \frac{1}{2} \phi &= (\phi)H \\
I + \frac{1}{2} \phi &= (\phi)H
\end{align*}
\]

The residual function is a special case of convolution.

Example 1.5.2: Convolution Special Function

- Unfortunately, due to space constraints, the example is abbreviated.

\[
\begin{align*}
\sum_{i=0}^{\infty} x_i &= (x)Y \\
\sum_{i=0}^{\infty} x_i &= (x)Y
\end{align*}
\]

The Residual Vector (Special Case)

Example 1.5.1: Direct Special Function

- The residual vector is calculated as follows:

\[
\begin{align*}
\sum_{i=0}^{\infty} x_i &= (x)Y \\
\sum_{i=0}^{\infty} x_i &= (x)Y
\end{align*}
\]

Classical Estimation Theory
Example 2.7.1: Actual Longitudinal Dynamics with Gain Note

(2) $\Phi = \Phi$ with $y = \frac{\Phi}{\Phi^2}$ and $\Phi = \Phi^2$

...
with white noises \(w_{k} \sim N\left(0, \sigma^{2}\right) \).

Now the discrete Kalman filter can be run on (8).

In practice the discretization would be performed using \(e^{xT} \), not by Euler's method.

\[
\begin{align*}
2x'_{k+1} &= \frac{T}{2}\left[1 \quad 0 \right] x_{k} + \frac{T}{2} \left[0 \quad 1 \right] w_{k}, \\
0 &= 1 - 2\omega_{n}T - \omega_{n}^{2}T^{2}. \\
\end{align*}
\]

\((8a) \)

If pitch \(\theta \) is measured every \(T \) sec, then

\[
\begin{align*}
\phi(\theta) = \\
\end{align*}
\]

\((7) \)

FIGURE 2.7-2 Some useful continuous spectrum-shaping filters.

State Equation

- Random Bias
 \[
 x_{k+1} = x_{k} + w_{k}, \\
 w_{k} \sim N\left(0, \sigma^{2}\right)
 \]

- Brownian Motion
 \[
 x_{k+1} = x_{k} + w_{k}, \\
 w_{k} \sim N\left(0, \sigma^{2}\right)
 \]

- First-Order Markov
 \[
 x_{k+1} = \frac{1}{1-\alpha} x_{k}, \\
 w_{k} \sim N\left(0, \sigma^{2}\right)
 \]

- Second-Order Markov
 \[
 x_{k+1} = \frac{1}{1-2\alpha} x_{k} + \frac{1}{1-2\alpha} w_{k}, \\
 w_{k} \sim N\left(0, \sigma^{2}\right)
 \]

with \(\phi(\theta) \) the measurement noise is white with \(b \sim N\left(0, \sigma^{2}\right) \). If the sampling period \(T \) is small then \(\phi(\theta) \) is negligible then the discretized plant is

\[
\begin{align*}
\phi(\theta) = \\
\end{align*}
\]

\((8) \)

FIGURE 2.7-3 Some useful discrete spectrum-shaping filters.

- Spectral Density
 \[
 \Phi_{X}(\omega) = \\
 \text{for } |\omega| \geq \omega_{n}, \\
 \Phi_{X}(\omega) = \frac{\alpha^{2} \sigma^{2}}{1 + \omega^{2} - 2\alpha \cos \omega}
 \]

- \(\Phi_{X}(\omega) = (1-\alpha^{2}) \sigma^{2} \)
 \[
 \Phi_{Y}(\omega) = \frac{(1-\alpha^{2}) \sigma^{2} \left(1 + \omega_{n}^{2} \frac{1 + \omega_{n} \cos \omega}{2} + 2\omega_{n} \cos 2\omega \right)}{(1 + \omega_{n}^{2} \cos \omega + 2\omega_{n} \cos 2\omega)}
 \]

\(\Phi_{Y}(\omega) = (1-\alpha^{2}) \sigma^{2} \left(1 + \omega_{n}^{2} \right) \)
OPTIMAL ESTIMATION

WITH AN INTRODUCTION TO STOCHASTIC CONTROL THEORY

1986

FRANK L. LEWIS

School of Electrical Engineering
Georgia Institute of Technology
Atlanta, Georgia

A WILEY-INTERSCIENCE PUBLICATION
JOHN WILEY & SONS
New York • Chichester • Brisbane • Toronto • Singapore