Ad hoc and Sensor Networks
Chapter 1: Motivation & Applications

Holger Karl
Goals of this chapter

- Give an understanding what ad hoc & sensor networks are good for, what their intended application areas are
- Commonalities and differences
 - Differences to related network types
- Limitations of these concepts
Outline

- *Infrastructure for wireless?*
- (Mobile) ad hoc networks
- Wireless sensor networks
- Comparison
Infrastructure-based wireless networks

- Typical wireless network: Based on infrastructure
 - E.g., GSM, UMTS, ...
 - Base stations connected to a wired backbone network
 - Mobile entities communicate wirelessly to these base stations
 - Traffic between different mobile entities is relayed by base stations and wired backbone
 - Mobility is supported by switching from one base station to another
 - Backbone infrastructure required for administrative tasks
Infrastructure-based wireless networks – Limits?

What if …

• No infrastructure is available? – E.g., in disaster areas
• It is too expensive/inconvenient to set up? – E.g., in remote, large construction sites
• There is no time to set it up? – E.g., in military operations
Possible applications for infrastructure-free networks

• Factory floor automation
• Disaster recovery
• Car-to-car communication

• Military networking: Tanks, soldiers, …
• Finding out empty parking lots in a city, without asking a server
• Search-and-rescue in an avalanche
• Personal area networking (watch, glasses, PDA, medical appliance, …)
• …
Outline

- Infrastructure for wireless?
- *(Mobile) ad hoc networks*
- Wireless sensor networks
- Comparison
Solution: (Wireless) ad hoc networks

- Try to construct a network without infrastructure, using networking abilities of the participants
 - This is an *ad hoc network* – a network constructed “for a special purpose”

- Simplest example: Laptops in a conference room – a *single-hop ad hoc network*
Problems/challenges for ad hoc networks

- Without a central infrastructure, things become much more difficult
- Problems are due to
 - Lack of central entity for organization available
 - Limited range of wireless communication
 - Mobility of participants
 - Battery-operated entities
No central entity! Self-organization

- Without a central entity (like a base station), participants must organize themselves into a network (self-organization)
- Pertains to (among others):
 - Medium access control – no base station can assign transmission resources, must be decided in a distributed fashion
 - Finding a route from one participant to another
Limited range! multi-hopping

- For many scenarios, communication with peers outside immediate communication range is required
 - Direct communication limited because of distance, obstacles, …
 - Solution: *multi-hop network*
Mobility! Suitable, adaptive protocols

- In many (not all!) ad hoc network applications, participants move around
 - In cellular network: simply hand over to another base station

- In *mobile ad hoc networks (MANET)*:
 - Mobility changes neighborhood relationship
 - Must be compensated for
 - E.g., routes in the network have to be changed

- Complicated by scale
 - Large number of such nodes difficult to support
Battery-operated devices! Energy-efficient operation

- Often (not always!), participants in an ad hoc network draw energy from batteries
- Desirable: long run time for
 - Individual devices
 - Network as a whole

Energy-efficient networking protocols
- E.g., use multi-hop routes with low energy consumption (energy/bit)
- E.g., take available battery capacity of devices into account
- How to resolve conflicts between different optimizations?
Outline

- Infrastructure for wireless?
- (Mobile) ad hoc networks
- **Wireless sensor networks**
 - Applications
 - Requirements & mechanisms
- Comparison
Wireless sensor networks

- Participants in the previous examples were devices close to a human user, interacting with humans.

- Alternative concept:
 Instead of focusing interaction on humans, focus on interacting with **environment**
 - Network is *embedded* in environment
 - Nodes in the network are equipped with **sensing** and **actuation** to measure/influence environment
 - Nodes process information and communicate it wirelessly

* Wireless sensor networks *(WSN)*
 - Or: *Wireless sensor & actuator networks* *(WSAN)*
WSN application examples

- Disaster relief operations
 - Drop sensor nodes from an aircraft over a wildfire
 - Each node measures temperature
 - Derive a “temperature map”

- Biodiversity mapping
 - Use sensor nodes to observe wildlife

- Intelligent buildings (or bridges)
 - Reduce energy wastage by proper humidity, ventilation, air conditioning (HVAC) control
 - Needs measurements about room occupancy, temperature, air flow, …
 - Monitor mechanical stress after earthquakes
WSN application scenarios

- Facility management
 - Intrusion detection into industrial sites
 - Control of leakages in chemical plants, …

- Machine surveillance and preventive maintenance
 - Embed sensing/control functions into places no cable has gone before
 - E.g., tire pressure monitoring

- Precision agriculture
 - Bring out fertilizer/pesticides/irrigation only where needed

- Medicine and health care
 - Post-operative or intensive care
 - Long-term surveillance of chronically ill patients or the elderly
WSN application scenarios

- Logistics
 - Equip goods (parcels, containers) with a sensor node
 - Track their whereabouts – *total asset management*
 - Note: passive readout might suffice – compare RF IDs

- Telematics
 - Provide better traffic control by obtaining finer-grained information about traffic conditions
 - *Intelligent roadside*
 - Cars as the sensor nodes
Roles of participants in WSN

- **Sources** of data: Measure data, report them “somewhere”
 - Typically equip with different kinds of actual sensors

- **Sinks** of data: Interested in receiving data from WSN
 - May be part of the WSN or external entity, PDA, gateway, …

- **Actuators**: Control some device based on data, usually also a sink
Structuring WSN application types

- **Interaction patterns** between sources and sinks classify application types
 - **Event detection**: Nodes locally detect events (maybe jointly with nearby neighbors), report these events to interested sinks
 - **Event classification** additional option
 - **Periodic measurement**
 - **Function approximation**: Use sensor network to approximate a function of space and/or time (e.g., temperature map)
 - **Edge detection**: Find edges (or other structures) in such a function (e.g., where is the zero degree border line?)
 - **Tracking**: Report (or at least, know) position of an observed intruder (“pink elephant”)
Deployment options for WSN

- How are sensor nodes deployed in their environment?
 - Dropped from aircraft! **Random deployment**
 - Usually uniform random distribution for nodes over finite area is assumed
 - Is that a likely proposition?
 - Well planned, fixed! **Regular deployment**
 - E.g., in preventive maintenance or similar
 - Not necessarily geometric structure, but that is often a convenient assumption

- **Mobile** sensor nodes
 - Can move to compensate for deployment shortcomings
 - Can be passively moved around by some external force (wind, water)
 - Can actively seek out “interesting” areas
Maintenance options

- Feasible and/or practical to maintain sensor nodes?
 - E.g., to replace batteries?
 - Or: unattended operation?
 - Impossible but not relevant? Mission lifetime might be very small

- Energy supply?
 - Limited from point of deployment?
 - Some form of recharging, energy scavenging from environment?
 - E.g., solar cells
Outline

• Infrastructure for wireless?
• (Mobile) ad hoc networks
• **Wireless sensor networks**
 • Applications
 • *Requirements & mechanisms*
• Comparison
Characteristic requirements for WSNs

- **Type of service of WSN**
 - Not simply moving bits like another network
 - Rather: provide *answers* (not just numbers)
 - Issues like geographic scoping are natural requirements, absent from other networks

- **Quality of service**
 - Traditional QoS metrics do not apply
 - Still, service of WSN must be “good”: Right answers at the right time

- **Fault tolerance**
 - Be robust against node failure (running out of energy, physical destruction, …)

- **Lifetime**
 - The *network* should fulfill its task as long as possible – definition depends on application
 - Lifetime of individual nodes relatively unimportant
 - But often treated equivalently
Characteristic requirements for WSNs

- **Scalability**
 - Support large number of nodes

- **Wide range of densities**
 - Vast or small number of nodes per unit area, very application-dependent

- **Programmability**
 - Re-programming of nodes in the field might be necessary, improve flexibility

- **Maintainability**
 - WSN has to adapt to changes, self-monitoring, adapt operation
 - Incorporate possible additional resources, e.g., newly deployed nodes
Required mechanisms to meet requirements

- Multi-hop wireless communication
- Energy-efficient operation
 - Both for communication and computation, sensing, actuating
- Auto-configuration
 - Manual configuration just not an option
- Collaboration & in-network processing
 - Nodes in the network collaborate towards a joint goal
 - Pre-processing data in network (as opposed to at the edge) can greatly improve efficiency
Required mechanisms to meet requirements

- Data centric networking
 - Focusing network design on *data*, not on *node identifies* (id-centric networking)
 - To improve efficiency
- Locality
 - Do things locally (on node or among nearby neighbors) as far as possible
- Exploit tradeoffs
 - E.g., between invested energy and accuracy
Outline

- Infrastructure for wireless?
- (Mobile) ad hoc networks
- Wireless sensor networks
- *Comparison*
MANET vs. WSN

- Many commonalities: Self-organization, energy efficiency, (often) wireless multi-hop
- Many differences
 - **Applications, equipment**: MANETs more powerful (read: expensive) equipment assumed, often “human in the loop”-type applications, higher data rates, more resources
 - **Application-specific**: WSNs depend much stronger on application specifics; MANETs comparably uniform
 - **Environment interaction**: core of WSN, absent in MANET
 - **Scale**: WSN might be much larger (although contestable)
 - **Energy**: WSN tighter requirements, maintenance issues
 - **Dependability/QoS**: in WSN, individual node may be dispensable (network matters), QoS different because of different applications
 - **Data centric** vs. id-centric networking
 - **Mobility**: different mobility patterns like (in WSN, sinks might be mobile, usual nodes static)
Wireless fieldbuses and WSNs

- **Fieldbus:**
 - Network type invented for real-time communication, e.g., for factory-floor automation
 - Inherent notion of sensing/measuring and controlling
 - Wireless fieldbus: Real-time communication over wireless

! Big similarities

- **Differences**
 - Scale – WSN often intended for larger scale
 - Real-time – WSN usually not intended to provide (hard) real-time guarantees as attempted by fieldbuses
Enabling technologies for WSN

- **Cost reduction**
 - For wireless communication, simple microcontroller, sensing, batteries

- **Miniaturization**
 - Some applications demand small size
 - “Smart dust” as the most extreme vision

- **Energy scavenging**
 - Recharge batteries from ambient energy (light, vibration, …)
Conclusion

- MANETs and WSNs are challenging and promising system concepts
- Many similarities, many differences
- Both require new types of architectures & protocols compared to “traditional” wired/wireless networks
- In particular, application-specificness is a new issue