Differentiating Metastatic and Non-metastatic Tumor Cells from their Translocation Profile through Solid-state Micropores

Waqas Ali, Azhar Ilyas, Loan Bui, Bailey Sayles, Yeun Hur, Young-tae Kim, and Samir M. Iqbal

Langmuir, Just Accepted Manuscript • DOI: 10.1021/acs.langmuir.6b00016 • Publication Date (Web): 01 Apr 2016

Downloaded from http://pubs.acs.org on April 29, 2016

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Differentiating Metastatic and Non-metastatic Tumor Cells from their Translocation Profile through Solid-state Micropores

Waqas Ali1,2,3, Azhar Ilyas1,2,3, Loan Bui4, Bailey Sayles4, Yeun Hur4, Young-Tae Kim4 and Samir M. Iqbal1,2,3,4,5,*

1\textsuperscript{Nano-Bio Lab, 2\textsuperscript{Department of Electrical Engineering, 3\textsuperscript{Nanotechnology Research Center, 4\textsuperscript{Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019. 5Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235.}}

*Contact Author:
Samir M. Iqbal, Ph.D.
Associate Professor,
UT Arlington.
500 S. Cooper St #217
Arlington, TX 76019
Email: SMIQBAL@uta.edu
Ph: 817-272-0228
Fax: 817-272-7458
Abstract

Cancer treatment, care and outcomes are much more effective if started at early stages of the disease. The presence of malignant cancer cells in human samples such as blood or biopsied tissue can be used to reduce over-treatment, under-diagnosis as well as for prognosis monitoring. Reliable quantification of metastatic tumor cells (MTCs) and non-metastatic tumor cells (NMTCs) from human samples can help in cancer staging as well. We report a simple, fast and reliable approach to identify and quantify metastatic and non-metastatic cancer cells from whole biological samples in a point-of-care manner. The metastatic (MDA MB-231) and non-metastatic (MCF7) breast cancer cells were pushed through solid-state micropore made in 200 nm thin SiO$_2$ membrane while measuring current across the micropore. The cells generated very distinctive translocation profiles. The translocation differences stemmed from their peculiar mechanophysical properties. The detection efficiency of the device for each type of tumor cells was ~75%. Metastatic cells showed faster translocation (34%) and 36% less pore blockage as compared to non-metastatic tumor cells. The micropore approach is simple, exact and quantitative for metastatic cell detection in a lab-on-a chip setting, without the need for any pre-processing of the sample.

Keywords: Solid-state micropores; Metastasis; Cell Mechanics; Early cancer treatment; Breast cancer; Cancer prognosis; Tumor staging.
Introduction

Metastatic tumor cells (MTCs) and non-metastatic tumor cells (NMTCs) are both cancer derivatives of normal cells, but there are significant differences between the two. These are different in their mechanophysical behavior, in their cytoskeleton structure and the way they operate in human body. At the early stages of cancer, only NMTCs are dominant in a lesion but with time these cells start transforming into MTCs. As the disease matures, the number of MTCs surpasses the number of NMTCs. Hence the advanced stages of cancer are marked by the abundant number of MTCs. At any time, during the course of the disease, exact quantification of MTCs and NMTCs present in a human body can give a precise measure for cancer stage and can indicate the maturity level of the disease.

It is important to determine the stage and monitor the progress for suitable therapy for all diseases. For cancer, this is of utmost importance. At early stages, many cancer types are dormant and curable. On the other hand, at the advanced stages, the disease is easily detectable but the chances of complete recovery are drastically reduced. For instance, in the case of breast cancer, 5-year relative survival rate after breast cancer diagnosis and treatment is 93-100% for stage 0-2, but it significantly decreases to 22% for stage 4. Similarly, in the case of lung cancer, 5-year relative survival rate is 31% for stage 1, but it drops to 2% at stage 4. Therefore, it is very important to reliably and precisely detect any type of cancer in early stages (stage 1-2). MTCs are much more dangerous and pose a greater health risk than NMTCs. These cells are the primary cause of 90% of the deaths of breast cancer patients. Determining the exact ratio of MTCs and NMTCs present in cancer patients can be vital
in prescribing the right cancer treatment. Though it is advantageous to quantify these two types of tumor cells from entire biological samples, at the same time, it is very challenging because there is no suitable technique to completely discriminate these cells in a point-of-care manner. All the existing methods to investigate cell properties require labor intensive pre-processing of the biological samples. For example, magnetic twisting cytometry, atomic force microscopy and micropipette aspiration have been shown to mechanically probe the cell surface, whereas microplate stretcher and laser/optical tweezers approaches do the same but optically. All these assays require labor-intensive sample preparation, and none of these can claim assessment of every cell in the biological sample. In a recent development engineered microbes have also been used to detect metastasis in liver. It required oral delivery of the engineered probiotic to the patient followed by the analysis of patient’s urine sample. Bacterial diagnostic techniques like this are still in their infancy and there are several challenges like selective trafficking of programmable probiotics and interaction of bacterial species etc. that must be addressed before the clinical trail can be made possible. We report a simple and efficient electrical detection approach to distinguish MTCs and NMTCs directly from the blood/tissue sample based on their translocation profile through a solid-state micropore. A single micropore device is a resistive pulse sensor that works on the principle of a coulter counter, in which any particle while translocating through the micropore causes a physical blockage which shows as a dip in the ionic current. The travel of different species with different shapes, physical, mechanical and chemical properties through the solid-state micropores causes unique electrical pulses in the ionic current. Previously, a similar device was used to detect
circulating tumor cells (CTCs) from the whole blood of a cancer patient. That was primarily a size based detection scheme. Adamo et al. used a microfluidic device to relate the translocation time of cells through narrow constrictions with the cell stiffness and found that stiffer cells took longer to pass through when compared to less stiff ones, through same diameter constriction. They used Foster Shawn theory and an analogy with Coulter principle to infer that the cell diameter could be determined by measuring the cell travel time through the constriction up to a certain threshold. When the cell size increased, that threshold value (i.e. when constriction was filled by the cell) of the cell travel time became independent of cell size. Only at this point device became sensitive to cell deformability. Though there is not too much difference between the cells’ size as well as the size of the nuclei for MTCs and NMTCs, as shown in Figure 1, it has been reported that the two types of tumor cells differ significantly from each other in behavior and other cell properties. NMTCs exhibit cell qualities similar to normal cells, whereas MTCs are more robust, dynamic, elastically deformable and flexible. Due to these differences, both types of cells give characteristic electrical signals while translocating through a micropore. NMTCs pass through the micropore slowly and cause much more ionic charge blockage whereas MTCs translocate much faster and exhibit less micropore blockage as indicated by their shorter dwell times and smaller peak amplitudes of the current pulses. This method provides a convenient and inexpensive way of differentiating MTCs and NMTCs in a lab-on-a-chip setting. It can be very useful for proper diagnosis of cancer and for prescribing the right treatment by detecting the maturity level of the disease. This
method is free from preprocessing requirements and does not need any particle/bead attachment, surface functionalization, or fluorescent tagging.

Experimental Section

All chemicals were obtained from Sigma-Aldrich unless otherwise noted. All processes and methods were as per the approved institution policies.

Tumor Cell Interrogating Micropores

The micropores were fabricated with standard CMOS processing technology. A 4-inch double-side polished Si wafer of thickness 500 µm and orientation (100) was first oxidized to grow a thin silicon dioxide layer of 200 nm. The wafer was cleaned with Piranha solution (H$_2$SO$_4$:H$_2$O$_2$, 1:1) and spin-coated with positive photoresist (PR) (Shipley S1813) on one side. After spin-coating the wafer was exposed to a UV source to pattern square etch windows on the spin-coated PR. The wafer was then dipped in developer solution (MF319) for a few seconds to remove the exposed PR. This step left patterned square windows in PR through which the bare silicon dioxide was etched (Fig. 2). During this process, the other side of the oxidized wafer was kept masked with PR layer. The wafer was immersed in buffered hydrofluoric acid (BHF) to etch away the exposed silicon dioxide through the patterned PR window. At this point, the whole PR pattern was transferred to the underlying layer of oxide. After thorough rinsing with deionized (DI) water, the wafer was washed thoroughly with acetone to remove PR from both sides.

The wafer was immersed in 25% tetramethylammonium hydroxide (TMAH) at 90 °C to anisotropically etch silicon. TMAH etches silicon at a rate of ~1 µm/min30. After
around 8 hours, all of the silicon was etched away from the exposed area and etching ultimately stopped after reaching the oxide layer on the other side of the wafer. The whole wafer was then cut into 5x5 mm² chips. Each chip had a membrane of silicon dioxide. Each chip was then drilled with Focused Ion Beam (FIB) to make micropores of 20 µm diameter. Diameters of drilled micropores can be controlled from 1-50 µm by adjusting exposure time, beam current and acceleration voltage²⁴,²⁵. The micropores for this work were drilled using acceleration voltage of 30 kV and beam current of 1 nA. The complete drilling occurred in 300 sec for 200 nm thin oxide membranes. After drilling, each chip was annealed by exposing to very high temperatures for a few seconds to release mechanical stresses of the oxide membrane (Fig. 2B)²⁵.

Measurement Setup & Data Analysis

The overall device assembly ensured that all paths for cell translocation were aligned and no solution leakage occurred. The micropore chip was sandwiched between two PDMS gaskets and these gaskets were further sandwiched between two Teflon blocks (Fig. 2). PDMS gaskets properly sealed the micropore chip. The gaskets and both blocks had 1 mm holes and the assembly was done in a way that the holes in the gaskets and blocks remained in alignment with the membrane in the chip. Both of the Teflon blocks had independent reservoirs that were connected to each other only through the micropore. One reservoir was the inlet and the other was the outlet, and both were filled with 0.85% (w/v) NaCl solution. Phosphate buffered saline (PBS) is a better medium for ensuring cell morphology, which was very crucial for these experiments. However NaCl was used because the electrical signals were less noisy and conductivity change due to pore blockage was more prominent. The downside was
that one must run the experiments within 1 hour of suspending the cells in NaCl
otherwise the cell activity would degrade and the cells might die or lose their
characteristics, causing them to become undistinguishable.

To apply voltage bias and to measure resulting current, Ag/AgCl electrodes were
used. The electrodes were connected to the data acquisition cards (DAQ) and were
dipped in each reservoir. DAQ block included a digital multimeter (NI PXI-1033 & NI
PXI-4071) and a DC voltage supply (NI SCB-68A, NI PXIe-6361 & NI SHC68-68-EPM).
Cells were pushed into the inlet reservoir using a syringe pump (Harvard Apparatus).

Micropore conductivity is given by the relation, \(G = \frac{\sigma \pi r^2}{L} \), where \(\sigma \) is the conductivity of
NaCl solution, \(r \) is micropore radius and \(L \) is the channel length/membrane
thickness\(^{26}\). When cells passed through the micropore, these caused physical blockage
of the micropore and reduced the effective radius that resulted in a decrease in
conductivity. A LabView program was used to collect and store ionic current data which
was further processed and analyzed with MATLAB scripts\(^{31}\). For statistical analysis, the
average and the standard deviation were calculated and \(t \)-test was carried out.

Flow Rate and Sampling Frequency

Special care had to be taken in selecting the flow rate of cells and the sampling
frequency for micropore measurements. A very high flow rate would increase the device
throughput but would be prone to miss subtle differences in translocation events
between MTCs and NMTCs, hence causing the device to lose selectivity. A low flow
rate would increase the device selectivity as there would be pronounced differences
between the pulses from two types of cells, but the device throughput will deteriorate.
Also using a very high sampling frequency adds too much noise to the system, decreasing the device sensitivity, but can potentially give higher resolution. A very small sampling frequency would have less noise but it would result in missed translocation events, again reducing the sensitivity26. Taking these trade-offs into consideration, experiments were performed at a flow rate of 1 ml/hour and sampling was done at 0.2 MHz.

Microchannel Device

The microchannels used in cell migration experiment had height and length of 5 µm and 530 µm, respectively. The microchannel widths decreased from 20 µm to 15, 10, 8, and finally became 5 µm just before the receiving reservoir (Figs. 7A and 7B). All devices were coated with collagen type 1 in advance. Dulbecco’s modified eagle’s medium/F-12 medium with 10% fetal bovine serum (FBS) was used and renewed as necessary during cell culture.

The devices were incubated at 37 °C and in 5% CO\textsubscript{2} environment. The cells were allowed to migrate via microchannels for 96 hours. After 96 hours, the cells were fixed with 4% paraformaldehyde in 1X PBS and stained with DAPI. The cells that had migrated from the microchannels into the receiving reservoirs were then counted with a fluorescent microscope. For statistical analysis, the average and the standard deviation were calculated and \textit{t}-test was carried out.

Cell Culture

MDA MB-231 and MCF7 breast cancer cell lines and human fibroblast cell lines were obtained from the University of Texas Southwestern Medical Center (Dallas, TX).
These cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM/F-12, Cellgro, Corning) with 10% heat inactivated fetal bovine serum. Gentamycin and L-glutamine (Invitrogen) were also added to the cell culture medium. HUVEC were purchased from Lonza and cultured in Medium 200 (Life Technologies) supplemented with low serum growth supplement (LSGS, Life Technologies). The cells were cultured under sterile, humidified, 95% air, 5% CO$_2$ and 37 °C environment.

Results

Cell Detection Efficiency

The experiments were repeated multiple times for both NMTCs and MTCs with known concentrations. Each peak in the data represented one cell. The number of peaks were used to calculate the detection efficiency of the device as follows.

$$Cell\ Detection\ Efficiency\ (\eta) = \frac{No.\ of\ Cells\ Detected}{Total\ No.\ of\ Cells} \times 100\%$$ \hspace{1cm} (1)

The efficiency was always more than ~75% for both cell types. Cell detection efficiency is strongly dependent on cell flow rate and sampling frequency and changing any of these from their optimized value severely deteriorated the peak capture rate and hence the efficiency.

Electrical Signatures of MTCs and NMTCs

Separate solutions were prepared for each tumor cell type by suspending 10,000 cells of each in 10 ml NaCl solution. Each mixture was processed for 15-20 minutes through a 20 µm micropore (Fig. 2B) one after the other, and data was recorded at the optimized settings. Both types of cells caused significant current blockage while
translocating through the micropore and a pulse was registered for almost each cell without any missed events. The experiments were repeated thrice and every time more than 75% cells were detected from the acquired pulses.

Analysis of the acquired data revealed that the distinguishing traits between the electrical pulses from the two tumor cells were the pulse width and pulse peak amplitude (Fig. 3). Pulse width depicted the cell dwell time in the micropore. It was observed that the electrical pulses registered by NMTC translocations were significantly wider and deeper in contrast to those obtained from MTC translocations. NMTCs registered pulses had average peak amplitude of 5.85 µA (S.D. 0.57) and average pulse width of 155.74 µs (S.D. 10.19). On the contrary, the average peak amplitude and average width of the pulses obtained from MTCs translocation was 3.83 µA (S.D. 0.58) and 99.2 µs (S.D. 14.31), respectively (Fig. 3). The 34% difference in peak amplitude and 36% difference in widths of the pulses were sufficient enough to uniquely identify these two tumor cell populations from their respective pulses.

Statistical data analysis was done by performing the t-test (unpaired). First, the test was conducted to check how significantly different were the registered pulses of NMTCs and MTCs in terms of their translocation times. The two populations (N=2000) were found to be significantly different ($p<0.0001$). Similar test was conducted to check the discrimination efficiency of the registered pulses of NMTCs and MTCs in terms of their peak amplitude and again the two populations (N=2000) were found to be significantly different with $p<0.0001$.
Reliability of Electrical Signatures from Micropore Device

The translocation profile was found to be steady throughout the measurements without any cell blockage. Figure 4 shows the comparison of electrical signal profiles for two cell types at three different time points (1, 10 and 30 minutes) of the recorded data. These results clearly demonstrated that the unique electrical signature of each cell reliably remained the same during entire analysis period.

Quantitative Cellular Discrimination from a Mixture of NMTCs and MTCs

The count of MTCs is expected to be too few at the outset of metastasis. For a true application, this framework has to be able to distinguish relatively small concentration of MTCs from NMTCs. It has been reported that on average as few as 5 CTCs are found in 7.5 ml blood sample of breast cancer patients\(^\text{32}\). It is still a question of debate as to how many of these would go through mesenchymal–epithelial transition and extravasate and start a new tumor. In nude mice, as fewer as 100 tumor cells have been shown to start new tumors\(^\text{33}\). To this end, mixtures of NMTCs and MTCs with known concentrations of each cell type were processed with the micropore device. Both tumor cells were suspended in 10 ml NaCl solution at two different relative concentrations (MTCs:NMTCs in 1:1 and 1:10). The solutions were mixed thoroughly to make homogenous mixtures and were processed with the micropore device at a flow rate of 1 ml/hour. The pulse counts for separate suspensions and the two mixtures are shown in Figure 5. The representative sample of 1 second for mixed suspension of equal concentrations of MTCs and NMTCs (1:1) shows 4 pulses for MTCs and 7 pulses for NMTCs (Fig. 5A) whereas the representative sample for mixed suspension of
unequal concentrations of MTCs and NMTCs (1:10) shows 1 pulse for MTCs and 10 pulses for NMTCs in 1 second time duration (Fig. 5B).

The detection efficiency for each cell type was again more than 75% and pulses were clearly distinguishable. Further analysis of the electrical pulses also indicated the presence of equal concentrations of both types of tumor cells for 1:1 mixture. The second mixture contained 10,000 NMTCs and 1,000 MTCs (10:1). Again, the detection efficiency for each cell type was more than 75% and the statistical analysis of the pulses revealed the presence of NMTCs and MTCs in ~10:1 ratio. The density plots, shown in Figure 5, indicate these results more clearly.

Statistical analysis was done by conducting the \(t \)-test. In Figure 5C, it can be seen that there are two populations. The one closer to origin is of MTCs as these have shorter translocation times and peak amplitudes and the one far from origin is of NMTCs due to their longer translocation times and higher peak amplitudes. The \(t \)-test analysis revealed that the two populations were statistically different with respect to translocation times (\(p<0.0001 \)) as well as in peak amplitudes (\(p<0.0001 \)). Further, it can be seen from the plot that the two distinct populations have almost same population density, which indicates the presence of equal number of NMTCs and MTCs in the mixture. In Figure 5D, there are two distinct populations. The population close to the origin has much lower density as compared to the other one indicating presence of fewer MTCs than NMTCs (1:10). The \(t \)-test analysis revealed that the two populations were significantly different with respect to translocation times (\(p<0.0001 \)) as well as peak amplitudes (\(p<0.0001 \)). These results indicate that precise quantification of
NMTCs and MTCs can be done in a mixture. All the experiments were done in triplicate. The data shown here is representative of the trends of other runs.

Detection Limit

To determine the limit of detection of the micropore device, a series of translocation experiments were conducted. For these experiments, three mixtures of MTCs and NMTCs were prepared in 10 ml NaCl solution each. The cell count of NMTCs was kept fixed at 10,000 cells for all the three mixtures whereas the cell count for MTCs was gradually reduced. First mixture had 400 MTCs, second had 200 and the third mixture contained only 100 MTCs. The temporal traces of the ionic current and the scatter plots for mixture 1, 2 and 3 are shown in Figures 6A, 6B, 6C, 6D, 6E and 6F, respectively. In 1 hour, 1 ml solution translocated through the micropore for each mixture and MTCs were detected reliably for each mixture. To check the discrimination efficiency of the two populations i.e. one from NMTCs and one from MTCs, in terms of their respective translocation times and peak amplitudes, the t-test was conducted. The test results for the three mixtures are shown in Table 1. From the test results it was inferred that the micropore device could easily detect MTCs even if these were as low as 10 cells/ml. It is also possible to detect even a lower concentration of MTCs than 10 cells/ml through this micropore device but then we would need to make sure that no cells cluster together in the suspension. This would require the addition of a chemical agent in the mixture that would break the epCAM and hence reduce the chances of cell agglomeration. This limit of detection is very much in line with the real samples MTCs as few as 100 are known to develop tumors in immunocompromised host mice.\footnote{33}
Cellular Discrimination from An Impure Sample

In the actual patient samples, there are many other cells than just MTCs and NMTCs. White blood cells (WBCs), red blood cells (RBCs), endothelial cells and fibroblasts are few of these. Since it has already been established that tumor cells can be differentiated from the WBCs and RBCs through the micropore device26, it was more important to make sure that cells like endothelial and fibroblasts did not interfere with the detection of MTCs and NMTCs through the micropore device. To check the viability of this device for processing of actual patient samples, a mixture of human umbilical vein endothelial cells (HUVEC), human fibroblasts, MTCs and NMTCs was prepared by mixing 5000 cells of endothelial cells and fibroblasts each and 2000 cells of MTCs and NMTCs each, in 10 ml NaCl solution. The mixture was processed through the micropore for 1 hour. A representative sample of the registered pulses is shown in figure 6G and the scatter plot of the registered events is shown in Figure 6H. Quantitatively, there are no direct ways to compare number of rare subpopulations within tumors that may form secondary tumors but a thousand of breast tumorigenic cells have been known to form tumors when injected into the mammary fat pad of SCID mice33.

The sizes of endothelial cells and fibroblasts are around 13 µm and 10-15 µm, respectively34-37. The translocation of these cells through a 20 µm micropore caused pulses that were very different from those of MTCs and NMTCs. The translocation time of the pulses registered due to the translocation of endothelial cells and fibroblasts ranged from around 15 µsec up to 150 µsec but majority of the population was centered around 40 µsec. The peak amplitude of the pulses was in the range of 0.7-2 µA. It can
be clearly seen from Figure 6H that MTCs and NMTCs can still be detected from the sample and can be differentiated from each other without any problem since the pulses associated with MTCs and NMTCs are significantly different than those of endothelial cells and stromal fibroblasts.

Breast Cancer Cell Migration through Tightly Confined Microchannels

To further investigate the mechanical differences between two cell types, and to see whether the translocation difference was indeed due to the difference in mechanical natures of the two cell types, cell migration was also observed through tightly confined microchannels. The MTCs and NMTCs were separately seeded (10,000 cells/device, n=18 devices/each cell type) in a microchannel device as described elsewhere. The device design had two reservoirs, one to seed the cells and another to receive them through tapered microchannels.

MTCs had an average of 542.3±168.8 cells that completely migrated to the receiving reservoir in contrast to an average of 1.22±1.66 NMTCs. This clearly showed that MTCs had the ability to quickly move through tightly confined microchannels like micropores whereas NMTCs were challenged by the spatial confinement.

Discussion

Elastic deformability differences between non-metastatic breast cancer cells and metastatic breast cancer cells were exploited to electrically differentiate NMTCs and MTCs with the use of micropores. Since the syringe pump pushed the sample from the inlet towards the outlet at a stable rate of 1 ml/hour, both MTCs and NMTCs were forced to pass through the micropore, the size of which was deliberately kept smaller
than both types of tumor cells. The reason is that, to investigate the elastic deformability as discriminating factor between two types of tumor cells, they should deform to pass through the micropore that is only possible when the micropore size is smaller than the tumor cell size. Table 2 shows the calculated values of shear rate, shear stress and velocity of cells inside and in the vicinity of the micropore and for comparison these values for blood inside the arteries and veins of a human body have also been noted here39. For calculations, the liquid medium (NaCl) was assumed to be a Newtonian fluid. Inside the micropore, the values are orders of magnitude higher than that of arteries and veins as well as micropore vicinity that is primarily because of the size difference between arteries (d \(\sim\) 4 mm), veins (d \(\sim\) 5 mm) and micropore (d \(\sim\) 20 \(\mu\)m). Shear stress and shear rate are strong function of the size of the flow path. A very high value of shear rate inside the micropore implies that very high degree of deformability is induced in cells while translocating through the micropore which is an indication that the translocation profile is a true reflection of the deformability properties of the cells.

Cell deformability is directly linked to the elasticity of the cells. Staunton et al. have reported a four-fold elasticity difference between the cellular deformability of metastatic cells and their non-metastatic counterparts1. Byun et al. also demonstrated the nexus between deformability of cells and their metastatic potential40. They reported the reduced friction of cancer cells as another factor for their enhanced metastatic potential and demonstrated that cell entrance velocity into a narrow constriction was an indicator of their deformability whereas cell transit velocity indicated whether the cell offered reduced friction or not while travelling through a narrow constriction. Metastatic cells are known to be more elastically deformable and softer, and these are capable of
exerting increased force28,41-43. While translocating through the micropore, both NMTCs and MTCs deformed to adjust to the size of the micropore. A lower translocation time for MTCs as compared to NMTCs stands to the reason. Since MTCs are known to depict higher elastic deformability and are more pliable than the NMTCs they took lesser time to deform and adjust according to the micropore size. On the other hand, NMTCs took comparatively longer time to deform due to their lower elasticity and hence hindered the ionic flow through the micropore for a longer time yielding a higher translocation time. More time a cell takes to deform and adjust to the size of micropore, longer it will hinder the ionic flow through the micropore and ultimately will result in a higher translocation time and vice versa. So the cell translocation time is an indirect measure of the cell elasticity. Due to higher cell elasticity, MTCs spent less time in the micropore because these could squeeze through more easily than NMTCs, which were rigid. The two cell types are known to have different elastic moduli (341±41 Pa for MDA MB-231 MTC and 425±31 Pa for MCF-7 NMTC)44 as well as drastically different levels of strain energy when measured in an elastic matrix (~0.8 pJ for MTCs vs. ~0.4 pJ for NMTC)45. The two tumor cell types are also known to have different properties of motility. Metastatic cells are capable to travel farther and in a spontaneous manner whereas non-metastatic cells are inclined to move in a non-linear manner4,28,29. The fact that the nuclei are much more stiffer and viscous than the surrounding cytoplasm, the nuclei are also possibly contributing to the resulting differences in the behavior46. These known cell traits of MTCs and NMTCs are also inline to our experimental observations and support our findings.
It is also important that experimental conditions don’t affect the phenotype of the cells so that post-processing and standard cytometry can be done later on. In this regard, one might think that very high values of shear rate and velocity of fluid inside the micropore may jeopardize the phenotype of translocating cells, rendering them useless for post-processing. Luckily this is not the case and such a high velocity and shear rate in the micropore did not affect the cell microenvironment and the cells stayed in their native state. Comparison of the phenotype integrity was performed based on the morphology of the cells before and 3 hours after passing through the micropore device (Fig. 7D & 7E). MDA MB-231 cells growing on a cultured Petri dish were first imaged prior to passing through the micropore device. Then after passing through the micropore, MDA MB-231 cells were collected, re-cultured on a Petri dish and then imaged again after three hours. As can be seen in Figure 7E, the cells did not show any change in their morphology. The rapid transaction through the micropore made the cell boundary squeeze only for so small a time that the internal rearrangement was for a very short transient. For the rest of the time, when cells were not inside the micropore, these experienced shear rate and velocity very close to what these would experience in arteries and veins of the human body (Table 1). These cells thus did not undergo any change in their phenotype and can be used for post-processing and standard cytometry. Post-processing can tell us a lot about new genes and cellular pathways that have been involved in the metastasis.

Micropore devices have been used as a filter in the past for size based detection of cells and their 3D profiling but in this work we have demonstrated its use as an electromechanical transducer. Our micropore device works as a transducer that probes
the mechanophysical properties of the translocating cells and generates electrical pulses based on those properties. These pulses can be analyzed then for cell differentiation and quantification. This whole process i.e. from the time when patient samples are collected till the analysis is completed using this device, takes not more than 1-2 hours and that too without the aid of specialized equipment and well-trained staff or physician. All that needed to get the timely results is a micropore device and the accompanying data acquisition and analysis setup that can be used for patient’s diagnoses in an ambulance, in the physician’s office, home or in a hospital. The presented scheme is not limited to breast cancer but is also suitable for differentiating any types of cells which differ in their biomechanical properties like stiffness, viscosity, elastic deformability, shape, etc. This approach has the potential to empower physicians to make timely decisions at the “point-of-care” and will help fight cancer in a better way. It can also be very useful in cancer therapy monitoring as cancer therapists almost always need to stage the cancer to determine outcomes and prognosis. Presence of more MTCs would indicate an advanced cancer stage. This device can conveniently be used to get these results quickly and reliably in a lab-on-a chip setting.
References

(34) Garipcan, B.; Maenz, S.; Pham, T.; Settmacher, U.; Jandt, K. D.; Zanow, J.; Bossert, J. Image analysis of endothelial microstructure and endothelial cell

Acknowledgements

We thank M. U. Raza, M. Arif I. Mahmood, M. M. Bellah and M. Islam for their help and useful discussions during this work. We would also like to thank the staff at Nanotechnology Research Center at UTA for trainings at various stages and thank Dr. Robert Bachoo at UT Southwestern Medical center for providing us the breast cancer cells. The work was supported by the NSF grant ECCS-1201878 and CPRIT grant RP110041.

Competing Financial Interests

The authors have no financial interests to disclose.
Figure Legends

Fig. 1. Cell and nucleus size comparison of the suspended (A) NMTCs (MCF7) and (B) MTCs (MDA MB-231). The cell diameter was measured from the optical images of cells (N=30) of each tumor type and average cell size was calculated. (C) The average cell size of MTCs and NMTCs was found to be very close. Average ± S.D. Suspended MDA MB-231 and MCF-7 were stained for nuclei by incubating with Hoechst 33342 (Invitrogen) for 15 minutes at 37°C. The fluorescence images of MTCs and NMTCs are shown in (D) and (E) respectively. The nucleus diameter was measured based on the fluorescence images using Image J, and quantitative analysis (N=30 per cell line) provided the average and standard deviation of the nucleus size shown in (F).

Fig. 2. Device fabrication, assembly and cancer cell measurement setup. (A) Fabrication of silicon dioxide membranes using UV-lithography followed by oxide and silicon etching in BHF and TMAH respectively. The free-standing membrane of silicon dioxide is drilled with FIB to fabricate the micropores of 20 µm diameter. (B) SEM micrograph of a drilled micropore in the silicon dioxide membrane is shown in inset. (C) Micropore chip is sandwiched between two PDMS gaskets and held between two Teflon blocks. Each Teflon black has a reservoir, one is the inlet as shown and the other one is the outlet. (D) The micropore device is connected in series with the voltage supply and ammeter through Ag/AgCl electrodes. The Ag/AgCl electrodes are used to apply 5V constant voltage and to measure the flow of ionic current through the micropore. (E) Micropore system schematic.

Fig. 3. Temporal trace of ionic current showing pulses from the translocations of (A) NMTCs only, and (B) MTCs only. (C) & (D) shows the ionic current profile of a representative pulse for NMTCs translocation and MTCs translocation respectively. The characteristic pulse for NMTCs is wider and deeper i.e. higher translocation time (~160 µsec) and higher peak amplitude (~5.9 µA) whereas the characteristic pulse for MTCs is thinner (translocation time ~100 µsec) and shallow (peak amplitude ~3.8 µA).

Fig. 4. The translocation profile for both tumor cells is stable throughout the experiments. The current signals at 1, 10 and 30 minutes after initial cell detection for each cell type are at same baseline indicating the reliable operation of the device.
Fig. 5. Temporal trace of the ionic current showing pulses from the translocations of MTCs and NMTCs in (A) 1:1 ratio (Mixture 1) and (B) 1:10 ratio (Mixture 2). Arrow indicates MTCs. (C) & (D) shows the data density scatter plot of pulse attributes from mixed cell suspensions of MTCs:NMTCs in 1:1 ratio and 1:10 ratio respectively. In both (C) & (D) population of MTCs and NMTCs obtained from pulse attributes is inline with the actual ratio of MTCs and NMTCs in the mixed suspension. The distribution plots of translocation time and peak amplitude for mixture 1 and mixture 2 are shown in (E), (F), (G) and (H) respectively. From the distribution plots, it can be seen that the variables (Translocation Time and Peak Amplitudes) are normally distributed.

Fig. 6. Temporal trace of the ionic current showing pulses from the translocation of three mixtures (10 ml each) containing fixed number of NMTC’s (10,000 cells) and MTCs (A) 400 cells (1:25) (B) 200 cells (1:50) and (C) 100 cells (1:100) and their corresponding scatter plots (D), (E) and (F) respectively. (G) and (H) shows the temporal trace of the ionic current and scatter plot for the mixture of 5000 cells of endothelial cells and stromal fibroblasts each and 2000 cells of NMTC’s and MTC’s each.

Fig. 7. Quantitative comparison of migration ability between (A) MTCs and (B) NMTCs. Representative micrographs show migration through the tapered microchannels. (C) Number of cells migrated from the seeding reservoir to the receiving reservoir via tapered microchannels; results are average ± standard deviation (*P<0.01). (D) MDA MB-231 cells growing on a cultured petri dish were first imaged prior to passing through the micropore device. (E) After passing through the micropore, MDA MB-231 cells were collected, re-cultured on a petri dish and then imaged after three hours. Comparison of the phenotype integrity was performed based on the morphology of the cells before and three hours after passing through the micropore device.
Table 1: t-test analysis results to discriminate MTCs and NMTCs population in a limited range

<table>
<thead>
<tr>
<th></th>
<th>t-test statistics to discriminate NMTCs and MTCs populations with respect to the Translocation Time</th>
<th>t-test statistics to discriminate NMTCs and MTCs populations with respect to the Peak Amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>df</td>
<td>t-value</td>
</tr>
<tr>
<td>Mixture 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_1 = 400 & N_2 = 27$</td>
<td>424</td>
<td>41.49</td>
</tr>
<tr>
<td>Mixture 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_1 = 400 & N_2 = 14$</td>
<td>410</td>
<td>30.25</td>
</tr>
<tr>
<td>Mixture 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_1 = 400 & N_2 = 9$</td>
<td>406</td>
<td>25.55</td>
</tr>
</tbody>
</table>

$N_1 = \text{Sample size for NMTCs}$

$N_2 = \text{Sample size for MTCs}$
Table 2

Table 2: Comparison of shear rate, shear stress and velocity of fluid inside and just outside the micropore with that for blood in arteries and veins\(^{39}\)

<table>
<thead>
<tr>
<th></th>
<th>Arteries</th>
<th>Veins</th>
<th>Micropore</th>
<th>Micropore Vicinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear Rate (sec(^{-1}))</td>
<td>900</td>
<td>160</td>
<td>3.53 (\times 10^8)</td>
<td>353</td>
</tr>
<tr>
<td>Shear Stress (dyn/cm(^2))</td>
<td>4-30</td>
<td>1-4</td>
<td>3.53 (\times 10^6)</td>
<td>3.53</td>
</tr>
<tr>
<td>Velocity (m/sec)</td>
<td>0.45</td>
<td>0.1</td>
<td>882</td>
<td>0.088</td>
</tr>
</tbody>
</table>
Graphic for Table of Contents
Figure 1
Figure 2

(A) Schematic diagram showing the steps involved in the fabrication process. Each step is labeled with a number:
1. Silicon layer
2. SiO₂ layer
3. PR layer
4. UV exposure
5. Wafer trimming
6. Wafer bonding
7. Wafer dicing
8. Chip packaging

(B) Image of the packaged microchip showing the integrated microfluidic system.

(C) Photograph of the microfluidic chip highlighting the PDMS gaskets and inlet/outlet ports.

(D) Image of the experimental setup, including the mechanical pump, electrical connections, and the microfluidic chip.

(E) Schematic diagram detailing the experimental setup with labeled components:
- Mechanical Pump
- Microfluidic Chip
- Tumor Cells
- Electrodes
- Teflon Blocks
- PDMS Gaskets
- DAQ (Data Acquisition System)
Figure 3
Figure 4

(A) Pore Current (nA) vs. Time (sec)

- Avg. Translocation Time (μs): 155.74 ± 10.19*
- Avg. Peak Amplitude (μA): 5.85 ± 0.57**

(B) Pore Current (nA) vs. Time (sec)

- Avg. Translocation Time (μs): 99.2 ± 14.31*
- Avg. Peak Amplitude (μA): 3.83 ± 0.58**

(C) 10 msec

(D) 100 μsec

* P < 0.0001 and N = 2000

** P < 0.0001 and N = 2000
Figure 5

 NMTC

 Peak Amplitude (μA) vs. Translocation Time (msec)

 1 min 10 min 30 min

 MTC

 Peak Amplitude (μA) vs. Translocation Time (msec)

 1 min 10 min 30 min
Figure 6
Figure 7

(A) Pore Current (nA) vs Time (sec)

(B) Pore Current (nA) vs Time (sec)

(C) Pore Current (nA) vs Time (sec)

(D) Peak Amplitude (μA) vs Translocation Time (μsec)

(E) Peak Amplitude (μA) vs Translocation Time (μsec)

(F) Peak Amplitude (μA) vs Translocation Time (μsec)

(G) Pore Current (nA) vs Time (sec)

(H) Peak Amplitude (μA) vs Translocation Time (μsec)

NMTC’s

MTC’s