ELECTRONIC DELIVERY COVER SHEET

Warning Concerning Copyright Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specific conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use,” that user may be liable for copyright infringement. This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.
Call #: QE515 .G36
Location: ANDERSON/CURRENT JOURNALS

ILL Number: 107527175

Journal Title: Geochemical journal.
Volume: 46 Issue: 5
Month/Year: 2012 Pages: 459-475

Article Author: QinHong Hu and XiangLei Mao
Article Title: Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to studies of chemical diffusion, sorption, and transport in natural rock

Patron: Gao, Zhiye

NOTES:

Thank You for Using Our Services!

Interlibrary Loan
University of Houston
114 University Libraries
Houston, TX 77204-2000

SHIP TO:
IUA - UTA LIBRARIES - ILL
11 DAL via TExpress
702 PLANETARIUM PLACE
ARLINGTON, TX 76019-0497

TN: 772869
Date sent: 8/5/2013

From: Location #: 49/HOU
OCLC Symbol: TXH

ATTENTION: UNIVERSITY OF TEXAS AT ARLINGTON

To Location #: 11

Hub City:
DAL
Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to studies of chemical diffusion, sorption, and transport in natural rock

QINHONG HU1 and XIANGLEI MAO2

1Department of Earth and Environmental Sciences, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019, U.S.A.
2Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, MS 70-108B, Berkeley, CA 94720, U.S.A.

(Received January 12, 2012; Accepted August 2, 2012)

We applied laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) techniques to make spatial measurements of chemical tracer concentrations in three natural rock types (tuff, sandstone, greywacke) in order to characterize important processes affecting chemical fate and transport (e.g., diffusion, sorption, imbibition, and advective transport). Specifically, we (1) evaluated LA-ICP-MS factors (e.g., spot size, laser pulse, primary grain size, and surface roughness) affecting quantitative laser sampling in both surface and depth mapping; and (2) applied LA-ICP-MS to investigate the fate and transport processes of a suite of chemicals (both non-sorbing and sorbing) in natural rock through laboratory studies of imbibition, diffusion under both saturated and unsaturated conditions, and transport in a rock core traversed by a saw-cut fracture. The results indicate that micro-scale mapping using LA-ICP-MS is a robust and sensitive technique for evaluating fate and transport of chemical species in natural rock. Direct mapping of chemical distributions using LA-ICP-MS techniques in natural rock offers distinct advantages over other methods of study, such as batch sorption experiments using crushed rock samples, and through-diffusion studies involving lengthy experiments during which test conditions may be difficult to maintain. Values of sorption distribution coefficient as determined using LA-ICP-MS techniques with centimeter-sized tuff samples, are consistently smaller, in both imbibition and diffusion experiments, than those obtained from batch-sorption tests using crushed samples with grain sizes in the 0.5–2.0 mm range.

Keywords: LA-ICP-MS, imbibition, diffusion, sorption, transport, rock

INTRODUCTION

Laser ablation refers to the process in which intense bursts of photon energy delivered by short laser pulses are used to vaporize a minute sample mass (in the range of nanograms) sample from a specific sample location. The chemical composition of the vaporized sample is then analyzed by an inductively coupled plasma-mass spectrometer (ICP-MS). Since the first experiment of Gray in 1985, laser ablation coupled with ICP-MS (LA-ICP-MS) has evolved into a powerful analytical tool for solid sampling and analysis (e.g., Russo et al., 2000, 2002, 2004; Longerich, 2008; Sylvester, 2005, 2008). LA-ICP-MS can determine, almost simultaneously, a large number of chemical elements at low detection limits, typically in the range of nanograms per gram to low–micrograms per gram.

Applications of LA-ICP-MS have been reported in a variety of environmental and geological studies for a diversity of sample types. Materials sampled have included biological specimens such as tree rings, bone, hair, teeth, seashells, fish otoliths, fish scales, and snake tail (Raithe et al., 1996; Watmough et al., 1998; Veinott, 2001; Jackson et al., 2003; Bellotto and Miekeley, 2007; Selc et al., 2007; Arora et al., 2011), airborne particulates (Wang et al., 1999; Liu et al., 2004; Hsieh et al., 2011), rocks and minerals (e.g., Fryer et al., 1993; Jackson et al., 2004; Tanaka et al., 2007), and fluid inclusions (Shepherd and Chenery, 1995; Günther et al., 1998; Heinrich et al., 2003; Mason et al., 2008). However, publications on the use of LA-ICP-MS techniques to study diffusion, sorption, and transport of chemicals in natural rock are limited (Hu et al., 2004; Hu and Möri, 2008; Wang et al., 2011). The high spatial resolution (in the range of microns) achieved by a focused laser beam makes LA-ICP-MS a very attractive tool for studies of chemical fate and transport in natural rock, where the chemical may only move a very limited distance. A rock surface of millimeter scale can be directly mapped for elemental concentration, even though the distribution of the element is limited by processes such as slow diffusion and strong sorption (Hu and Möri, 2008).
Table 1. Properties of rock samples used in this study

<table>
<thead>
<tr>
<th>Rock</th>
<th>Source</th>
<th>Porosity (%)</th>
<th>Permeability (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana Sandstone</td>
<td>Gas storage formation, IN</td>
<td>22.8</td>
<td>9.1×10^{-13}</td>
</tr>
<tr>
<td>Welded Tuff</td>
<td>Yucca Mountain, NV</td>
<td>9.3</td>
<td>5.0×10^{-19}</td>
</tr>
<tr>
<td>Meta-graywacke</td>
<td>The Geysers steam reservoir, CA</td>
<td>3.9</td>
<td>1.2×10^{-17}</td>
</tr>
</tbody>
</table>

Interest in fluid flow and chemical transport in fractured rock has grown rapidly in the past three decades, driven by the need to characterize contaminated sites, to evaluate potential sites for waste disposal or carbon sequestration, and to provide chemical transport information needed for groundwater management, geothermal energy development, or hydrocarbon recovery (Evans and Nicholson, 1987; Bear et al., 1993). The evaluation of processes such as the sorption of dissolved chemicals (e.g., radionuclides) by natural rock relied heavily upon batch-sorption or column-transport experiments. These often involved the use of crushed rock samples or samples sliced from solid rock; concentrations of sorbed or dissolved species were typically determined by labor-intensive extraction and analysis procedures. For example, Perkins and Lucero (2001) described an experiment in which thin layers of rock (in the range of 73 to 418 μm) were removed by milling from an intact core of Culebra dolomite collected at the Waste Isolation Pilot Plant, a nuclear waste disposal facility in New Mexico. The milled layers were examined by liquid scintillation counting to determine concentrations of 241Pu (plutonium) and 241Am (Americium). The objective was to obtain concentration profiles as a function of distance for these elements. However, the large spatial resolution of the milling approach produced only a few above-background data points, because of the strong retardation of 241Pu and 241Am with the rock matrix. In another laboratory study, Hu et al. (2002) examined the penetration of chemical tracers (bromide and two dyes) into unsaturated tuff collected at Yucca Mountain, Nevada. The penetration of these tracers occurred from imbibition and diffusion into tuff prepared under two different initial water saturations. The rock milling method, with 1 mm thickness resolution, allowed concentration profiles of non-sorbing bromide to be defined, but was not sufficient for delineating the distribution front of sorbing dyes.

Typically, batch-sorption experiments incorporate saturated conditions and large water/rock ratios that are not representative of in situ vadose zone conditions (Limousin et al., 2007). Crushed rock samples are used, in which the effective sample size—i.e., the grain size of the sample (in the range of microns to sub-millimeters)—is chosen more or less arbitrarily, and often primarily for reasons of experimental convenience. In addition, batch-sorption experiments typically employ well-mixed conditions that could yield large sorption values that may not apply to actual in situ flow conditions, which are particularly characterized by limited contact time between the fluid and intact rock. Finally, for weakly-sorbing chemicals, the batch-sorption approach can produce variable and even negative sorption values, because the methodology inherently depends on the subtraction of two numbers (initial and final aqueous concentration) that, for weakly-sorbing chemicals, may be similar. To minimize these problems, studies of chemical sorption should ideally be conducted using intact (non-crushed) rock specimens under conditions that approximate the prevailing field situation (e.g., in saturation and contact time).

In this paper, we demonstrate the application of LA-ICP-MS in laboratory studies of chemical fate and transport in natural rock. The studies included experiments involving (1) chemical imbibition, (2) saturated diffusion, (3) unsaturated diffusion, and (4) fracture flow. Our results demonstrate that LA-ICP-MS offers important advantages over other methods in environmental studies of chemical fate and transport in various rock types.

ROCK SAMPLES

Samples of three rock types were collected, representing a significant range of the petrophysical characteristics (e.g., porosity, permeability, mineralogy, and grain size) that most affect diffusion, sorption, and other transport processes. These rock types were fine-grained volcanic tuff, coarse-grained sandstone, and weakly metamorphosed graywacke (sandstone characterized by an irregular grain structure); they represent a range of environmental and economic significance (Table 1). For example, the Topopah Spring welded volcanic tuff was collected from the underground tunnel at Yucca Mountain, Nevada. Throughout the period from the late 1970's to 2008, this site was intensively studied as a potential high-level nuclear waste repository.

CHEMICALS

Many radionuclides (e.g., 90Sr, 99Tc, 129I, 137Cs, 237Np, and uranium and Pu isotopes) are of concern with respect to health risks at contaminated sites associated with past
nuclear operations, or with respect to potential risks at geological repositories for high-level nuclear wastes (Hu et al., 2010). In terms of chemicals, the primary focus in this study was on radionuclides, but both radionuclides and non-radioactive species were employed in the experiments to better investigate how the processes of imbibition, diffusion, sorption, and movement in fractures may affect the fate of radionuclides. Thus, non-radioactive cesium (Cs) and strontium (Sr) were selected as surrogates for radioactive 137Cs and 90Sr, based on their chemical similarity to these radionuclides. Similarly, permanganate (K_mno_4) was selected as an analog for 99TcO$_4^-$ (Brookins, 1986), and samarium (Sm) an analog for actinides with +3 valance state. Perhenate, bromide (Br$^-$) and/or iodide (I$^-$) were used as nonsorbing tracers, with their conservative behavior confirmed from previous laboratory column transport tests using crushed tuff and many other geological samples (Hu and Moran, 2005). These anionic tracers provide different aqueous molecular diffusion coefficients (Br$^-$/I$^-$ versus $K_mno_4^-$) to evaluate the importance of the diffusion process in rocks. The selected cationic sorbing tracers, including Cs$^+$, Co$^{2+}$, Sr$^{2+}$, Sm$^{3+}$, and Pu(V), were used to study delayed transport (retardation) related to cationic interactions with rock minerals. The chemical suite provided a range of sorption affinities, with Pu and Am (Sm) commonly reported to be the most strongly sorbed (Zhang and Brady, 2002).

Chemical tracer solutions were prepared using ultrapure (Type I) water from >99% pure reagents (CoBr$_3$, CsBr, CsI, NaBr, NaReO$_4$, SmBr$_3$, 6H$_2$O, SrBr$_2$, 2H$_2$O, Aldrich Chemical Co.). Concentration levels used for the imbibition and saturated-diffusion experiments were 400 mg/L CoBr$_2$, 100 mg/L Csl, 4000 mg/L NaBr, 100 mg/L NaReO$_4$, 200 mg/L SmBr$_3$, and 400 mg/L SrBr$_2$. In the

Table 2. List of LA-ICP-MS operating conditions

<table>
<thead>
<tr>
<th>Laser ablation</th>
<th>Minilaser II, Coherent, New Infinity; Nd:YAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser system</td>
<td>Q-switched</td>
</tr>
<tr>
<td>Operating mode</td>
<td>1.1–1.3</td>
</tr>
<tr>
<td>Wavelength</td>
<td>686 nm</td>
</tr>
<tr>
<td>Output power (nJ/pulse)</td>
<td>10</td>
</tr>
<tr>
<td>Pulse duration (ns)</td>
<td>6–10</td>
</tr>
<tr>
<td>Repetition rate (Hz)</td>
<td>35</td>
</tr>
<tr>
<td>Gas blank time (s)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ICP-MS

<table>
<thead>
<tr>
<th>Spectrometer</th>
<th>VG-PQ3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward power (W)</td>
<td>1350</td>
</tr>
<tr>
<td>Argon flow rate</td>
<td>9.9</td>
</tr>
<tr>
<td>Carrier gas (l/min)</td>
<td>1.02</td>
</tr>
<tr>
<td>Auxiliary gas (l/min)</td>
<td>14.2</td>
</tr>
<tr>
<td>Cooling gas (l/min)</td>
<td>25</td>
</tr>
<tr>
<td>Dwell time per peak (ms)</td>
<td>Varies among analytes (10–100)</td>
</tr>
<tr>
<td>Data acquisition mode</td>
<td>Time resolved</td>
</tr>
<tr>
<td>Acquisition duration (s)</td>
<td>40–70</td>
</tr>
</tbody>
</table>

Fig. 1. Time resolved LA-ICP-MS signals for selected tracer and intrinsic elements on a tuff sample.
unsaturated-diffusion experiments, higher concentrations of 5000 mg/L CsBr, 50000 mg/L NaBr, 5000 mg/L NaReO₄, 10000 mg/L SmBr₃, and 20000 mg/L SrBr₂ were used to pre-saturate the tracer-source tuff samples. This was done to ensure that at least a very small diffused tracer concentration (e.g., near the limit of LA-ICP-MS detection) would be achieved in the tracer-free sink tuff samples.

LA-ICP-MS METHODOLOGY

Instrumentation and data acquisition

A CETAC LSX-200 laser ablation system (CETAC Technologies) with variable spot sizes ranging from 10 μm to 300 μm, interfaced with an ICP-MS (VG-PQ3, VG Elemental) was used in the study. The CETAC laser system has a flat laser beam energy profile, and the Nd:YAG laser was operated in Q-switched mode at 266 nm wavelength with 6 ns pulse duration and a repetition rate of 10 Hz (Guilong et al., 2002). Typical operating conditions for the LA-ICP-MS are presented in Table 2; the dwell time per pixel was 10 millisecond (ms) for most elements, and 50-100 ms for radionuclide tracers at low concentration (e.g., ²³⁷Np and ²⁴²Pu) and for evaluating instrument background at atomic mass-to-charge ratios of 220 or 245.

During data acquisition, signal intensities (counts per second, cps) were recorded for elements applied as tracers (e.g., ⁸⁸Sr, ¹³³Cs, ¹⁸⁵Re, ²³⁷Np and ²⁴²Pu) or intrinsic to the rock (e.g., ²⁸Si, ⁴⁰Ca, ⁸⁸Rb, ¹³⁷Ba, ²³⁵Th). The intensity during the gas blank interval was taken as the background from isotopic- and polyatomic-mass interferences, and subtracted for the integration of the intensity after laser ablation was initiated; an Excel macro was constructed for this data reduction process. Figure 1 shows a typical result of time-resolved LA-ICP-MS signals.

The surface mapping was conducted by firing laser pulses at a sample location on the rock surface, collecting signal responses by ICP-MS, and then moving to the next sample location. A closer sampling interval was used near the tracer-contacted face (the tracer-entry face, e.g., the imbibition bottom) than on the opposite (tracer-exit) face. After mapping the exterior rock surface(s), the cubic samples used in the diffusion and imbibition tests were cracked open, using a hammer and chisel on the tracer-exit face, to expose the sample interior. Smearing of the tracer signal in this process was minimized by first covering the tracer-exit face with a Teflon film. The opened, and usually rough, interior surface was then mapped using the same surface-mapping technique, but with the laser focus adjusted anew at each sampling location to accommodate the rough surface.

In addition to the surface mapping, depth mapping was carried out to study sub-micron range chemical penetration into rock. In depth mapping, lasers are fired consecutively at the same location on the rock surface (e.g., the imbibition face) and the number of laser pulses fired (which corresponds to the sampling depth) is monitored. The laser pulses were incrementally increased until the cumulative sampling depth was on the order of several hundred microns. Depth mapping, with its micron-range spatial resolution, can normally capture even very limited distributions of tracer chemicals, such as those encountered in studies involving strongly retarded materials, and can thus provide a valuable supplement to surface-mapping results.

Spot size and laser pulse

The spot size dictates the spatial resolution during surface mapping, whereas the number of laser pulses fired determines the amount sampled. The choice of practical spot size may be dictated by the degree of heterogeneity of the matrix. However, in contrast to some geological studies (for example, the determination of the elemental composition of fluid inclusions of small sample size, e.g., 10-25 μm), studies of the fate and transport of chemical tracers in natural rock commonly involve cm-sized samples, and spatial resolutions on the order of tens of microns are sufficient for most purposes.

Selection of a large spot size can mitigate the variability arising from the differences between pore-size and grain-size of rock matrix, and better achieve representative sampling. The Yucca Mountain volcanic tuff consists largely (~99 vol. %) of a former glassy matrix, which is now devitrified to fine crystals (3-10 μm diameter) of cristobalite, alkali feldspar, and quartz (Johnson et al., 1998). In this work, a spot size of 100 μm was used for samples of fine-grained tuff, whereas a spot size of 200 μm was used for the coarser-grained sandstone and metagraywacke samples. For both spot sizes, measured relative standard deviations (RSD) for major intrinsic elements were about 10-15% at six randomly-chosen sampling locations.

Figure 2a shows the relationship between the ICP-MS signal responses (cps, y-axis) for nine elements naturally occurring in the tuff, as a function of the laser pulse numbers (x-axis). These elements span a wide atomic mass unit (amu) range. Without adjusting the laser focal distance, the response is linear across the amu range up to at least 100 laser pulses, corresponding to a depth of about 80 μm, as estimated from a measured 0.8 μm depth/pulse with a white-light interferometer. At greater depths, the laser begins to lose focus.

Figure 2b shows the shape and depth of a crater formed from laser ablation on a machined tuff sample with a measured surface roughness of 2.2 μm. The results show that the crater exhibits a flat bottom after 10-25 laser pulses. These findings indicate that we can correlate the number of laser pulses to the crater depth (i.e., the sam-
Fig. 2. (a) Linearity between responses of intrinsic tuff elements and numbers of laser pulses; (b) Crater depth and shape at a nominal 100-µm spot size; the numbers of laser pulses are indicated in the legend.

Sampling distance) during tracer depth-mapping of rock matrix to evaluate μm-range fate and transport processes (e.g., matrix diffusion).

For environmental studies, both surface- and depth-mapping of the chemical distribution in the rock may be necessary. However, attention should be paid to the maximum practical depth that can be achieved in depth-mapping. The crater depth-to-diameter (aspect) ratio is

Applying LA-ICP-MS to study chemical processes in rock 463
an important parameter determining the degree of elemental fractionation (Egginas et al., 1998; Borisov et al., 2000; Woodhead et al., 2008). As the aspect ratio increases, mass removal mechanisms may change from photo-thermal to plasma-dominated. As the crater deepens, the ablation rate (amount of mass removed per laser pulse) decreases. Cone-shaped craters tend to hinder in-depth profiling because the chemical carry-over in successive laser pulses may lead to an inaccurate measurement of the concentration profile with depth. The potential of redeposition of ablated materials to affect the subsequent sampling has been evaluated by several papers (cf., Woodhead et al., 2008), who reported that depth profiling can yield optimal results as long as the aspect ratio (depth:width) is less than 2:1. An approach that we use is to carry out shallow depth-mapping (in the range of tens of microns) to profile the distribution of strongly-sorbed chemicals, and then to perform surface-mapping of crack-opened interior surfaces (using a spot size of 100 or 250 μm) to obtain the distribution of less strongly sorbed tracers.

In research involving natural rock, samples with rough surfaces are frequently encountered. Figure 3 presents surface profiles of a tuff sample with rough (non-machined) surfaces for nine elements at a sampling interval of 1.5 mm. At each sampling location, the laser focus was adjusted to achieve clear sample image. The stable (flat) responses indicate that nearly the same volumes were sampled at each location, with vertical changes of up to 200 μm, providing increased confidence that representative solid sampling was achieved on the rough surface. An important advantage of the LA-ICP-MS method over other analytical methods (e.g., microprobe) is that little or no sample preparation is required prior to analysis, so that the smearing of chemical presence that may accompany sample preparation is avoided.

Choice of internal standards

Quantitative measurement of chemical concentration has been one of the major challenges in LA-ICP-MS analyses due to the lack of matrix-matched calibrations (Jackson, 2008). The concentration of an analyte is usually calculated from (1) the normalized ratio (the division of signal intensity for the analyte by an internal standard, e.g., Si) of both unknown and reference samples (Longerich et al., 1996; Ghazi et al., 2000; Russo et al., 2002) or by (2) summation of the intensity signals for major elements of rock-forming minerals to 100% (i.e., Na, Mg, Al, Si, K, Ca, Fe, Mn, and Ti) to calculate the ablation yield correction factors, which does not require the knowledge of their concentrations (Halicz and Günther, 2004; Gagnon et al., 2008; Liu et al., 2008; Peng et al., 2012).
The absolute chemical concentration in a rock sample may not be required in many chemical fate and transport studies, where a signal profile in some ratio format provides sufficient information on the spatial distribution of chemicals for data interpretation; this is illustrated in the present study, as discussed below.

A very uniform distribution of elemental compositions in Yucca Mountain tuff was reported by Peterman and Cloke (2002), and many minerals in tuff contain aluminum and silicon (Dobson et al., 2003), which makes them a good choice as an internal standard. As shown from this work, normalized signals based on Si or Al consistently exhibit the best stability among the intrinsic tuff elements. Normalization differentiates the signal reduction due to the low ablated sample amount from that associated with the small tracer concentration at this sample point. This normalization approach helps improve data quality in surface mapping, whether the surface is rough, machined, or machined and polished. In each of these cases, the RSD of integrated net intensity shows consistent improvement between normalized and non-normalized approaches.

Further, the minerals and other components (weight%) in metagraywacke were reported by Persoff and Hulen (2001) with 33–41% quartz, 21–24% albite, 7–21% chlorite ((Mg,Al,Fe)$_2$((Si,Al)$_8$(OH)$_{16}$), 5–10% illite/smectite (K$_{1-5}$Al$_{4-6}$Si$_{7-8}$Al$_{1-3}$O$_{20}$(OH)$_{10}$); (1/2Ca, Na)$_{0.7}$Al$_{2.5}$Fe$_{0.5}$(Si,Al)$_8$(OH)$_4$mH$_2$O), and 2–10% K-feldspar (KAlSi$_3$O$_8$). In our study, it was found that Si and Ca served as suitable internal standards for metagraywacke and Indiana sandstone, based on the mean standard deviation and RSD from replicate measurements.

Chemical Fate and Transport Experiments

Imbibition Test

Using an approach similar to that reported by Hu et al. (2002), imbibition tests were carried out to investigate coupled processes of chemical sorption and transport under unsaturated conditions. This unsaturated transport-sorption technique overcomes some shortcomings (micron-sized crushed samples and saturated conditions) of conventional batch-sorption experiments, and yields a more realistic evaluation of chemical transport in unsaturated intact rock at the centimeter scale.

Briefly, the tests were carried out by hanging, under a balance, a cm-sized rock sample (either a cube or cylinder) inside a humidity-controlled chamber. Sides of the cube samples were coated with quick-cure transparent epoxy, and the sample top was loosely foil-covered, but left with a small hole for air escape, to minimize vapor absorption from the top face. The sample bottom was submerged to a depth of about 1 mm in a reservoir of tracer-containing solution. The imbibition rate was monitored by automatically recording the sample weight change over time. After a predetermined period of time (minutes for permeable sandstones and hours for low-permeability tuff and metagraywacke), the sample was lifted out of the reservoir, frozen with liquid nitrogen, then freeze dried under –80°C and about 1 Pa for a day, and kept in dry storage at a relative humidity below 10% prior to LA-ICP-MS analysis. Tracer distribution was mapped by LA-ICP-MS on the tracer-entry and tracer-exit faces (to evaluate source concentration and to determine if the tracer front had reached the sample top, respectively). Then, after crack-opening, the tracer distribution on the interior face was mapped as a function of distance above the imbibing bottom.

Saturated Diffusion Test

Saturated diffusion tests were carried out on three types of rock samples, which were fully saturated with deionized water with the help of vacuum pulling. The procedure involved the use of a pulling vacuum on dry rock, and allowing the solution to invade the evacuated pore space to achieve full saturation. The sample was then placed on a Teflon mesh inside a liquid container in such a way that only the bottom portion of the sample (to minimize hydraulic head difference) was in contact with the tracer solution, which was constantly stirred using a magnetic stirrer. The tracer solution reservoir volume was on the order of 800 mL, compared to a sample pore volume of less than 1 mL; the high volume ratio was used to ensure that a constant tracer concentration would prevail in the tracer reservoir (as required to satisify the boundary condition of the applicable mathematical solution of the diffusion equation describing the experimental procedure). The sealed container was placed inside an incubator to maintain a controlled temperature of 23°C.

A similar approach was used by Kohn et al. (2002) to study tracer (chloride and bromide) diffusion in soil aggregates with surface skins of different physical properties than the matrix. Kohn et al. (2002) monitored tracer concentration decrease in the reservoir over time to derive the diffusion coefficient of the soil sample. In the present study, the tracer concentration distribution in the rock sample was determined *in situ* by LA-ICP-MS after a certain diffusion time, which ranged from hours to one day depending upon rock properties such as porosity and permeability. Significantly, we were able to conduct saturated diffusion experiments in less than one day, compared with days to months for conventional through-diffusion experiments (Boving and Grathwohl, 2001).

Unsaturated Diffusion Test

Unsaturated diffusion experiments were conducted on tuff samples under several different initial water saturations (Hu et al., 2004). Briefly, this was a half-

Applying LA-ICP-MS to study chemical processes in rock 465
Fig. 4. Experimental setup for chemical transport study in fractured tuff core and LA-ICP-MS mapping scheme.

element (source-sink) approach, in which the source element was a cubic sample of rock initially saturated with tracer solution, the sink element a cubic or tetrahedral sample of the same rock initially saturated with deionized water, and the diffusion coefficient was determined from the final tracer distribution profile in the sink sample. The source element, a cube 1.5 cm in each dimension, was vacuum-saturated with the solution of tracer mixture; the sink element, either a cube or tetrahedron depending on the contact area to be studied, was saturated with deionized water, again with the help of vacuum pulling. Both the source- and sink-elements were next placed in an RH-controlled chamber in order to establish the same capillary potentials, thereby preventing or minimizing the opportunity for advective transport. To investigate the effect of inter-grain contact and relative humidity (hence thickness and continuity of surface water films), these experiments were designed to evaluate two configurations of sample geometry (cube-cube and cube-tetrahedron) within RH chambers with a wide range of relative humidities (43, 76, 93, 98, and nearly 100%).

Several weeks after the samples had reached a constant weight, indicating equilibrium, the source and sink elements were clamped together to start the diffusion experiments, which ranged from 0.8 to 16 days depending on the humidity environment (i.e., water saturation; the lower the saturation, the longer the duration). The samples were unclamped and separated to stop the experiments, and then frozen and freeze-dried. Tracer distributions on the exterior faces, as well as the interior surface, of both elements were mapped using LA-ICP-MS.

Fracture flow test

A liquid flow and tracer transport experiment was performed using a cylindrical tuff core (10.2 cm in length, 4.4 cm in diameter) with a longitudinal saw-cut fracture having an aperture of 100 μm (Fig. 4). The dry core was packed into a column, flushed with CO₂ to replace air in the pore spaces, and then saturated via slow pumping (0.01 mL/min) of synthetic groundwater similar to the natural groundwater of the Yucca Mountain site. The saw-cut core was then flushed with humidified air at a measured relative humidity of >97% to simulate in situ conditions in unsaturated rock at Yucca Mountain (Flint et al., 2001).

In addition to the various radionuclides of concern (³H, Br⁻, ReO₄⁻, I⁻, Sr²⁺, Cs⁺, Sm³⁺, ²³⁵U, ²³⁷Np, and ²⁴²Pu), the tracer solutions used in the fracture flow transport experiments contained chemical species spanning a wide range of sorptive characteristics. ³H, Br⁻, I⁻, and ReO₄⁻ served as non-sorbing tracers with different diffusion coefficients, to allow evaluation of the matrix diffusion contribution. A total of 100 fracture pore volumes of solution, as calculated from the cross-sectional area and aperture geometry, were directly injected into the fracture at a slow rate of 0.01 mL/min, and the core was then flushed with tracer-free synthetic groundwater at the same pumping rate. Liquid effluent from the flow column was continuously collected with a fraction collector, analyzed
Fig. 5. Tracer distribution from surface mapping (200-μm spot size and 20 laser pulses) on the crack-opened interior face of tuff for (a) non-sorbing tracers (the vertical line indicates the distance at which the tracer concentration is half of the maximum concentration in the profile); and (b) sorbing tracers with different background levels (e.g., after 6 mm for Sm$^{2+}$). The intensity ratio in the y-axis is based on the internal standard of Al for tuff, and the response of another intrinsic element (Si) in tuff is also shown in (a) to indicate the stability across the sample.
Fig. 6. Relative concentrations for anions (ReO$_4^-$ and Br$^-$) and cation (Cs$^+$) in the saturated diffusion tests for (a) Indiana sandstone cylinder of 0.7 cm in dia., and 1.0 cm in length (Ca as the internal standard, and Si as another "uniform" intrinsic element); and (b) 1.5 cm-sized metagraywacke cube (Si as the internal standard and K as another "uniform" intrinsic element). Relative concentration in the y-axis is obtained by dividing normalized intensity ratios (analyte intensity to that of the internal standard) from the interior face to that of the diffusion bottom face, which is assumed to have the C_0 value from its continuous contact with the tracer solution. Lines in the figure are the fitted analytical diffusion solutions (Eq. (1)) for Cs$^+$ with the apparent diffusion coefficients shown.
using ICP-MS for multiple elements, and analyzed using liquid scintillation counting for 3H; thus the breakthrough curves of non-retarded or less-retarded tracers were obtained. To minimize the evaporation effect on effluent sample concentration from the very slow flow test, the fraction collector was placed inside a closed container in which a high relative humidity was maintained by placing several water beakers. The liquid flow experiment was 34 days in length, to allow full evaluation of the long elution process; after freeze drying of the tuff sample, the distribution of strongly retarded tracers within the tuff core was characterized using both surface- and depth-mapping by LA-ICP-MS (Fig. 4).

RESULTS AND DISCUSSION

Chemical imbibition

In this work, transient experiments were designed to investigate water imbibition and associated chemical transport of multiple tracers into cm-scale rock. Capillary-driven imbibition acts to transport chemicals upward from the imbibing bottom face, with sorbing chemicals subject to delayed transport (retardation) compared to non-sorbing chemicals.

Figure 5 presents the tracer imbibition results for a Yucca Mountain tuff sample initially dried at 60°C. Figure 5a shows a uniform intensity distribution of the intrinsic element Si over the distance from 0 to 14.8 mm from the imbibing (bottom) surface. Figure 5a also shows nearly uniform intensity ratio distributions for the non-sorbing tracers Br and ReO$_4^{−}$ up to ~10 mm, followed by decreasing intensities thereafter due to dispersion. These non-sorbing tracers probably reached the top boundary of 15-mm in the experimental duration of about 18 hours, as confirmed from visual observation of the wetting front reaching the sample top (tracer-exit) face. Figure 5b shows the distribution of four cationic sorbing tracers, which exhibit transport distances only up to about 4 mm. The delayed transport, compared to the non-sorbing tracers, is attributed to sorption processes, with increasing sorption according to the sequence Co$^{2+}$ < Sr$^{2+}$ < Cs$^+$ < Sm$^{3+}$. This trend generally fits the principles of surface chemistry governing cationic sorption onto surfaces, which imply a pattern of increasing sorption as follows: monovalent < divalent < trivalent (Tabatabai and Sparks, 2005). Clearly, the micro-scale LA-ICP-MS technique can interrogate the intensity distribution profiles of multiple tracer elements with different sorption coefficients.

A numerical code HYDRUS (Simunek et al., 2005), which simulates transient transport-sorption processes, is
Fig. 8. Chemical transport in a fractured tuff core column: (a) effluent breakthrough curves; (b) surface-mapping results showing the distribution of strongly sorbing tracers on the fracture face of the tuff; and (c) combined depth- and surface-mapping results showing the transverse penetration of tracer chemicals into the tuff matrix from the flowing fracture at the location of 1.9 mm down from the injection end. For (a) and (b), the intensity ratio is normalized on Si and the signal response of another intrinsic element (Ca) is also shown.
used in the analysis of experimental data to fit sorption coefficients. Concentrations of sorbed material are generally expressed as mass of sorbate per unit mass of porous-medium sorbent; concentrations of tracer remaining in the pore moisture are expressed as mass of solute per unit volume of water. The sorption distribution coefficient, K_d, is the ratio of sorbed concentration to dissolved concentration remaining in the pore water at equilibrium, and is conventionally used to characterize the tracer distribution between the aqueous and solid phases (Fetter, 2008). Values of distribution coefficient in the range of 20–31 mL/g for Sr$^{2+}$ and 52–115 mL/g for Cs$^+$ were measured from our batch-sorption tests, using crushed samples of 0.5–2 mm fraction sizes, according to standard methods (ASTM, 1998). Smaller K_d values, in the range of 5–10 mL/g for Sr$^{2+}$ and 30 mL/g for Cs$^+$ were obtained from the inhibition test reported here. These results confirm that, as discussed in the Introduction section, some of the uncertainty inherent in the batch-sorption experiments can be eliminated, and more realistic sorption data (corresponding to unsaturated transport conditions) are obtained.

Saturated diffusion

Figure 6 presents the relative concentration profiles resulting from chemical diffusion process, which were measured with LA-ICP-MS for tracers in Indiana sandstone and metagraywacke samples. For Indiana sandstone, the non-retarded tracers ReO$_4^-$ and Br$^-$ passed through the entire 10-mm sample length within the experiment duration of 6.8 hours (Fig. 6a). The high diffusivity implied by this result is likely related to the high porosity of the sandstone sample (Table 1). For the sorbing tracer Cs$^+$, the diffusion front only reached a distance of about 5.6 mm. In contrast, corresponding diffusion-test results for the metagraywacke sample (Fig. 6b) show little difference between the relative concentration profiles of ReO$_4^-$ and Cs$^+$, indicating the limited chemical diffusion in metagraywacke. In the ReO$_4^-$ diffusion profile in metagraywacke, the relative concentration decreases strongly with distance, up to a point almost 4 mm from the entry face. From that point to a distance of about 7 mm the relative concentration remains at an almost constant minimum; at distances beyond 7 mm, an increasing trend of relative concentration is observed; the causes are not known.

In a one-dimensional system in which concentration is held constant at one end and the concentration profile does not reach the opposite (diffusion exit) boundary, the analytical solution to the transient diffusion equation (Fick's second law) can be expressed as follows (Crank, 1975; Flury and Gimni, 2002):

$$\frac{C}{C_0} = \frac{1}{2} \operatorname{erfc} \frac{x}{2\sqrt{D_t}}$$

Applying LA-ICP-MS to study chemical processes in rock 471
where \(C (\text{M \ L}^{-3}) \) is the observed concentration at a distance \(x (\text{L}) \) from the entry boundary, \(C_0 (\text{M \ L}^{-3}) \) is the constant concentration at the diffusion entry boundary, \(D_a (\text{L}^2 \text{T}^{-1}) \) is the apparent diffusion coefficient incorporating both diffusion and sorption, and \(t (\text{T}) \) is the diffusion time.

Apparent diffusion coefficients were calculated from Eq. (1) using the observed relative concentration values. The results are \(1.0 \times 10^{-10} \text{ m}^2/\text{s} \) for Cs\(^+\) in Indiana sandstone and \(4.0 \times 10^{-12} \text{ m}^2/\text{s} \) for ReO\(_4^−\) and Cs\(^+\) in metagraywacke. These results illustrate the utility of LA-ICP-MS in studies of slow diffusive sorptive transport involving multiple tracers. The experimental time periods, generally less than a day required for this approach, offer obvious advantages over the long experimental durations (days to months) often required in conventional through-diffusion approaches, particularly where the test conditions are difficult to maintain over long periods.

Unsaturated diffusion

The unsaturated diffusion experiments allowed apparent diffusion coefficients to be determined for a mixture of chemical tracers in Yucca Mountain tuff. Figure 7 shows an example of tracer relative concentration profiles obtained for ReO\(_4^−\) and Cs\(^+\) using the cube-cube configuration in partially-saturated tuff under 98% relative humidity. Curve-fitting of Eq. (1) to the concentration profiles indicates two orders of magnitude difference in the apparent diffusion coefficients between ReO\(_4^−\) (5.0 \(\times \) \(10^{-11} \text{ m}^2/\text{s} \)) and Cs\(^+\) (4.6 \(\times \) \(10^{-13} \text{ m}^2/\text{s} \)), indicating the contribution from sorption of cationic Cs\(^+\) to its slow diffusion. The half-element approach and micro-scale LA-ICP-MS mapping made it feasible to evaluate the diffusion processes of both nonsorbing and sorbing tracers in unsaturated rock.

The measured diffusion coefficient in fully-saturated (100%) tuff for ReO\(_4^−\) is \(2 \times 10^{-10} \text{ m}^2/\text{s} \), compared to a value of \(5.0 \times 10^{-11} \text{ m}^2/\text{s} \) obtained in the unsaturated diffusion experiments with the tuff saturation of 88.8%. Thus a relatively slight reduction in saturation leads to a decrease of diffusion coefficient with by a factor of 4, further illustrating the strong effect of water saturation on chemical diffusion (Hu et al., 2004).

From the measured diffusion coefficients, the retardation factor \(R_f \) is calculated to be 153 for Cs\(^+\), based on tortuosity obtained from ReO\(_4^−\) profile and aqueous diffusion coefficients for Cs\(^+\). The value of \(R_f \) is related to \(K_d \) by:

\[
R_f = 1 + \frac{K_d \rho_b}{\theta}.
\]

This equation indicates that solute retardation is inversely related to the water content \(\theta \) (dimensionless) and positively to the bulk density \(\rho_b \) (M \text{ L}^{-3}). Note that the concept of \(K_d \) implicitly denotes a linear equilibrium sorption behavior (e.g., Fetter, 2008). Using the measured water content of 0.0826 and bulk density \(\rho_b \) of 2.27 g/cm\(^3\), the \(K_d \) value can be calculated from the \(R_f \) given above to be 5.53 mL/g for Cs\(^+\) in Yucca Mountain tuff, which is also smaller than the value of 52–115 mL/g obtained from the batch-sorption tests.

Fracture flow

Chemical transport in unsaturated fractured tuff (a tuff core with a saw-cut fracture) is characterized by rapid flow and chemical transport through the fracture, and the concomitant transverse diffusion and imbibition into the matrix (Fig. 8). This is evident from the long tailing of the non-sorbing tracers (\(^3\)H, Br\(^-\), I\(^-\), and ReO\(_4^−\)) in the elution portion of the experiment (Fig. 8a). Although displaying some breakthrough due to fast flow through the fracture (Fig. 8a), the strongly-sorbing tracers (Cs\(^+\), Sm\(^3+\), and \(^{242}\)Pu) are largely sorbed onto the surfaces of the fracture within the first 0.5 cm distance from the injection face (Fig. 8b). In addition to adsorption, transverse penetration (matrix diffusion and imbibition) into the adjacent tuff matrix leads to further retardation of dissolved chemical along the fracture, and increased tracer mass held in the matrix. This is especially evident for the high-mass tracer \(^{242}\)Pu; its presence as measured by combined \(\mu\text{m}-\text{range depth-} \) and surface-mapping yields an intensity ratio profile of nearly four orders of magnitude above its background ratio of \(10^{-6} \) at the location of 1.9 mm below the injection end (Fig. 8c).

Summary

The results of this paper illustrate the utility of the LA-ICP-MS approach in studies of chemical fate and transport in natural rock, particularly as associated with the processes of imbibition, saturated diffusion, unsaturated diffusion, and fracture flow. The sensitivity of the method, its extremely refined scale of measurement, and the ease with which it can be coupled to other procedures offer advantages over other approaches to the study of chemical fate and transport in solid rock. In chemical imbibition tests, the method overcomes the shortcomings of batch-sorption approaches through direct monitoring of sorbed tracers in intact and unsaturated rock. In diffusion testing, direct mapping of tracer profiles significantly reduces the experimental duration, compared with that required in through-diffusion approaches. In a transport test in a core with a saw-cut fracture, although rapid transport and early breakthrough due to flow through the fracture was of course observed, the LA-ICP-MS method revealed detailed information on the processes of transverse matrix diffusion and imbibition, which act to retard overall chemical transport.
Acknowledgments—The financial support for this work was partially provided by the University of Texas at Arlington, and by the Department of Energy (DOE) to the Ernest Orlando Lawrence Berkeley National Laboratory through the U.S. DOE Contract No. DE-AC03-76SF00098.

REFERENCES

