TABLE OF CONTENTS

Purpose .. 3
Program Objectives ... 3
Program Outcomes .. 3
Program Overview ... 4
Degree Requirements ... 4
Representative Course Sequence .. 5
Prerequisite Structure of the CS Curriculum .. 6
Course Offerings ... 7
Admission Requirements .. 7
Prior Preparation ... 7
Readiness Examinations ... 7
Student Advising .. 7
Transfer Students and Transfer Credits .. 7
Cooperative Education Program .. 8
Honors Program ... 8
Graduate Degree Paths .. 8
Elective Courses ... 8
 Mathematics (MEL) .. 8
 Science (SEL) .. 9
 Technical (TEEL) .. 9
 Social/Cultural (SCEL) .. 9
 Fine Arts (FAEL) .. 11
BSCS UNDERGRADUATE PROGRAM GUIDE

PURPOSE

This document has been prepared to assist the new or prospective student in understanding the undergraduate program in Computer Science (CS) offered by the University of Texas at Arlington. ¹

The Undergraduate Catalog is the official source of university information. Each student should become familiar with it, and consult it for answers to questions regarding policies, regulations, and course descriptions. It is also important that all students watch for memos and notices posted on the CSE department bulletin boards and website that pertain to undergraduate students. These notices are of a current or real-time nature, dealing with required student actions or important opportunities.

PROGRAM OBJECTIVES

The BSCS program has been formulated so that graduates will: (1) enter the computing profession or advanced studies supported by their fundamental knowledge of mathematics, basic science, computing systems and science; (2) will advance in this profession supported by their ability to work in teams, analyze complex computing systems, design solutions and implement these solutions using computer software tools and technologies; and (3) demonstrate success and leadership while advancing the practice of computing by contributing to the growth of their employers, communities, and professional societies through their proficiency in communication, understanding of professional ethics and the ability to engage in continuing professional development.

PROGRAM OUTCOMES

From the educational objectives described above, the department designed the programs to meet the following Program Outcomes, to ensure that its graduates have:

- an ability to apply knowledge of mathematics, science, and engineering
- an ability to design and construct experiments, as well as to analyze and interpret data
- an ability to design a system, component, or process to meet desired needs
- an ability to function on multidisciplinary teams
- an ability to identify, formulate, and solve engineering problems
- an understanding of professional and ethical responsibility
- an ability to communicate effectively
- the broad education necessary to understand the impact of engineering solutions in a global and societal context
- a recognition of the need for, and the ability to engage in, lifelong learning
- a knowledge of contemporary issues
- an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

¹ This guide is not an official publication and the contents hereof are not official policy of The University of Texas at Arlington or of The University of Texas System. In all matters, the Rules and Regulations of the Regents of The University of Texas System, The Handbook of Operating Procedures of The University of Texas at Arlington, and the Undergraduate Catalog of The University of Texas at Arlington shall supersede this guide.
PROGRAM OVERVIEW

Historically, the computer science program started at UTA in the early 1970’s as a master’s level program within the Industrial Engineering Department. A Ph.D. program was started a few years later. The bachelor’s degree was first offered in 1978.

A separate Department of Computer Science and Engineering was established in 1980, and the undergraduate program was accredited by the Accreditation Board for Engineering and Technology (ABET) in 1983, and has maintained its accreditation ever since. This was the first CSE undergraduate program to be accredited in the state. The program received accreditation from the Computing Sciences Accreditation Board (CSAB) in 1995, making it the first program in Texas accredited by both ABET and CSAB. In 2001 the CSE department started the Bachelor of Science in Computer Science degree and the Bachelor of Science in Software Engineering degree.

Our graduates are readily recruited by industry and can be found in exciting computer related positions throughout the area and the nation.

DEGREE REQUIREMENTS

The degree requirements for the Bachelor of Science in Computer Science (BSCS) degree are given below. The program is divided into two levels or subprograms: the pre-professional and the professional programs. All pre-professional courses must be passed (math, science and computer science courses with at least a C grade), and a minimum UTA GPA of 2.25 must be earned before the student is admitted to the professional program.

Two four-hour freshman level foreign language courses in the same language are also required unless the student has completed at least two years of a foreign language in high school or English is his/her second language.

Pre-Professional Courses

- English: ENGL 1301 and 1302.
- Mathematics: MATH 1426 and 2425.
- Natural Science: PHYS 1443 and 1444.
- Computer Science & Engr.: CSE 1104, 1105, 1320, 1325, 2312, 2315 and 2320.

General Education Courses

- Literature: 3 hours of literature (English or modern and classical languages) or approved substitute.
- Liberal Arts: COMS 3302.
- Fine Arts: 3 hours of an approved fine arts elective (see page 11).
- History: HIST 1311 and 1312.
- Political Science: POLS 2311 and 2312.
- Social/Cultural Studies: 3 hours of an approved social or cultural elective (see page 9).

Professional Courses

- Computer Science & Engr.: CSE 3302, 3310, 3315, 3316, 3320, 3330, 4316, and 4317
 One of: CSE 4303, CSE 4305, CSE 4308.
- Industrial Engineering: IE 3301 (or MATH 3313), and IE 3312.
- Mathematics: MATH 3330 and 3 hours of an approved math elective (see page 8).
- Science: 4 hours of approved science electives (see page 9).
- Technical Electives: 15 hours of approved technical electives (see page 9).

Pre-Professional Total: 42 hours.
General Education Total: 24 hours.
Professional Total: 58 hours.
Total (for degree): 121 hours, plus modern and classical languages as required.
REPRESENTATIVE COURSE SEQUENCE
COMPUTER SCIENCE (CS)

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 1104 - Introduction to Engineering</td>
<td>CSE 1325 - Object-oriented Programming</td>
</tr>
<tr>
<td>CSE 1105 - Introduction to CSE</td>
<td>ENGL 1302 - Critical Thinking, Reading and Writing II</td>
</tr>
<tr>
<td>CSE 1320 - Intermediate Programming</td>
<td>MATH 2425 - Calculus II</td>
</tr>
<tr>
<td>ENGL 1301 - Critical Thinking, Reading and Writing I</td>
<td>PHYS 1443 - General Technical Physics I</td>
</tr>
<tr>
<td>MATH 1426 - Calculus I</td>
<td>HIST 1312 - History of the United States</td>
</tr>
<tr>
<td>HIST 1311 - History of the United States</td>
<td></td>
</tr>
<tr>
<td>Total Credit 15 Hours</td>
<td>Total Credit 17 Hours</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 2315 - Discrete Structures</td>
<td>CSE 2320 - Algorithms & Data Structures</td>
</tr>
<tr>
<td>CSE 2312 - Computer Organization & Assembly Language Programming</td>
<td>CSE 3315 – Theoretical Concepts in CSE</td>
</tr>
<tr>
<td>IE 3301 – Engineering Probability</td>
<td>MATH 3330 - Introduction to Matrices & Linear Algebra</td>
</tr>
<tr>
<td>PHYS 1444 – General Technical Physics II</td>
<td>POLS 2312 - State & Local Government</td>
</tr>
<tr>
<td>POLS 2311 - Government of the United States</td>
<td>COMS 3302 – Professional and Technical Communication</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit 16 Hours</td>
<td>Total Credit 15 Hours</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 3310 - Fundamentals of Software Engineering</td>
<td>CSE 3302 - Programming Languages</td>
</tr>
<tr>
<td>CSE 3330 - Database Systems & File Structures</td>
<td>CSE 3316 – Professional Practices</td>
</tr>
<tr>
<td>IE 3312 - Engineering Economy</td>
<td>CSE 3320 – Operating Systems</td>
</tr>
<tr>
<td>Literature Elective, 3 hours</td>
<td>Technical Elective, 6 hours</td>
</tr>
<tr>
<td>Science Elective, 4 hours</td>
<td></td>
</tr>
<tr>
<td>Total Credit 16 Hours</td>
<td>Total Credit 15 Hours</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 4316 – Computer System Design Project I</td>
<td>CSE 4317 – Computer System Design Project II</td>
</tr>
<tr>
<td>CSE 4308 – Artificial Intelligence I</td>
<td>Technical Electives, 6 hours</td>
</tr>
<tr>
<td>Technical Electives, 3 hours</td>
<td>Fine Arts Elective, 3 hours</td>
</tr>
<tr>
<td>Math Elective, 3 hours</td>
<td></td>
</tr>
<tr>
<td>Social/Cultural Elective, 3 hours</td>
<td></td>
</tr>
<tr>
<td>Total Credit 15 Hours</td>
<td>Total Credit 12 Hours</td>
</tr>
</tbody>
</table>

TOTAL CREDIT HOURS = 121 hours, plus modern and classical languages as required.
BS in Computer Science (BSCS), 2010-2011 catalog

Updated: 7/8/2010

General Education
- Literature (ENGL 2309, 2319, or 2329)
- HIST 1311
- HIST 1312
- POLS 2311
- POLS 2312
- 3 hours Fine Arts elective
- 3 hours Social/Cultural elective

Note 1: must take one of 4303, 4305, or 4308

Statistics note: MATH 3313 can be used instead of IE 3301, but it has a prerequisite of MATH 2326

Foreign language (if required, two semesters of the same language)

See list of approved courses.
COURSE OFFERINGS

All 1000- and 2000-level CSE courses are usually offered each semester and in the 11-week summer session. All 3000-level courses and required 4000-level courses are typically offered at least twice per year. Other 4000-level courses are typically offered only once per year unless there is a high demand. Refer to the CSE department bulletin boards or Web site for more specific and current information. The CSE department reserves the right to move students among equivalent sections of the same course.

ADMISSION REQUIREMENTS

Requirements for admission as a Computer Science pre-major or major are governed by the requirements stated under the College of Engineering section of the Undergraduate Catalog. Computer Science pre-majors become majors upon completion of 12 hours of required science, mathematics and CSE courses with a 2.25 or better grade point average.

All entering students majoring in Computer Science are permitted to enroll in general education and pre-professional courses for which they are qualified. Students completing these pre-professional courses must meet the academic requirements specified by the College of Engineering prior to applying for admission to the professional program. The Computer Science and Engineering Department requires a 2.25 overall grade point average on a 4.0 scale in each of three categories: (1) overall, (2) required science, mathematics, and engineering courses, and (3) required CSE courses. Students not in the professional program must have permission from the department chairperson to receive credit for courses listed in the professional program category. Application for admission to the professional program is made to the Department of Computer Science and Engineering. Application forms can be obtained from the departmental office or the advising Web page.

PRIOR PREPARATION

The baccalaureate program in computer science, BSCS, is a four-year program, and requirements for the degree are based upon prior high school preparation through either an honors or college track. More specifically, entering students are expected to have a background in mathematics through pre-calculus, high school chemistry, and programming in a high-level language such as C, C++ or Java.

Students who have not had the appropriate preparation should contact the departmental advising office for assistance in structuring a degree plan that will include leveling courses. Students requiring leveling courses may require a longer period of time to complete their undergraduate program.

READINESS EXAMINATIONS

Students will be required to pass readiness examinations before enrolling in the courses listed below unless the course prerequisite was taken at U.T. Arlington and passed with a C or better grade. Students not passing the readiness examination must take the prerequisite course. A readiness examination may be taken only once, per course. Additional information is available in the departmental office.

- CSE 1320: Intermediate Programming
- CSE 1325: Object-oriented Programming

STUDENT ADVISING

Computer Science (CS) pre-majors and majors are required to be advised by a departmental advisor each semester. Consult the departmental bulletin boards or Web site for advising hours. Continuing students are encouraged to submit advising requests via the CSE Web site. New and transfer students must also be advised prior to the beginning of the semester in which they first enroll.

TRANSFER STUDENTS AND TRANSFER CREDITS

After admission and prior to registration, transfer students should contact the Department of Computer Science and Engineering for advising. At the time of advising, a transfer student must present to their undergraduate advisor an official transcript (or copy) from each school previously attended. Only the equivalent courses in a program accredited by the Accreditation Board for Engineering and Technology (ABET), or equivalent freshman, sophomore, or general education courses accepted by the department chairperson can be counted toward a degree in computer science.
A student, once admitted to The University of Texas at Arlington and enrolled in the Computer Science (CS) program, cannot enroll in courses at another college or university and transfer those courses for credit toward a degree in Computer Science (CS) without having obtained prior written permission from the chairperson of the Department of Computer Science and Engineering.

COOPERATIVE EDUCATION PROGRAM

Cooperative education or Co-op programs are arrangements where students alternate periods of full-time employment with periods of full-time study, usually during the last two years of a degree program. The employment is directly related to the student's major and pays an attractive salary. Thus, Co-op students gain valuable career related experience before graduating while earning a meaningful income. Cooperative education opportunities are plentiful for Computer Science (CS) students.

HONORS PROGRAM

The Computer Science and Engineering department encourages qualified CS majors to participate in the Honors College described in the Undergraduate Catalog. Projects may be pursued in any one of the areas of concentration within the Department of Computer Science and Engineering.

GRADUATE DEGREE PATHS

Computing is a rapidly changing discipline requiring lifelong learning by its professionals. Completing a graduate degree enhances an individual’s ability to assimilate and apply their knowledge and skills to meet on the job challenges and the needs of society. Pursuing a graduate degree on a full-time basis immediately after completing the baccalaureate is an attractive option for many students. Students are encouraged to discuss possibilities with a Graduate Advisor upon advancement to a Bachelor of Science professional program.

Direct Acceptance to Doctoral Programs from Bachelor’s Degree Program

Excellent undergraduate students may qualify for acceptance to doctoral studies without the intermediate completion of a masters degree. Students should discuss the expected level of commitment and possibilities for long-term support with a Graduate Advisor.

ELECTIVE COURSES

Courses that can be used to satisfy the various elective requirements in the CS curriculum are listed below by category. Please note that courses listed in more than one category may be used to satisfy the requirements of only one of those categories.

Mathematics Electives (MEL)

Any of the following courses may be used to satisfy the mathematics elective requirement. The use of any other course for the mathematics elective must be approved in advance by the department chairperson. Consult the undergraduate catalog for course descriptions and prerequisites.

- MATH 2326 - Calculus III
- MATH 3300 - Introduction to Proofs
- MATH 3303 - Mathematical Game Theory
- MATH 3304 - Linear Optimization Applications
- MATH 3307 - Elementary Number Theory
- MATH 3315 - Mathematical Models
- MATH 3318 - Differential Equations
- MATH 3321 - Abstract Algebra
- MATH 3335 - Analysis I
- MATH 3345 - Numerical Analysis and Computer Applications
Science Electives (SEL)

Any of the following courses may be used to satisfy the science elective requirement. The use of any other course for the science elective must be approved in advance by the department chairperson. Consult the undergraduate catalog for course descriptions and prerequisites.

- BIOL 1441 - Cell and Molecular Biology
- BIOL 1442 - Structure and Function of Organisms
- CHEM 1441 - General Chemistry
- CHEM 1442 - General Chemistry
- CHEM 1465 – Chemistry for Engineers
- GEOL 1425 - Earth Systems
- PHYS 3445 - Optics

Technical Electives (TEEL)

Any of the following courses may be used to satisfy technical elective requirements. The use of any other course for a technical elective must be approved in advance by the department chairperson. The courses may be taken in any combination except that three or more must be CSE courses. Recommended technical electives for the CS degree are indicated by an asterisk (*). Consult the undergraduate catalog for course descriptions and prerequisites.

- CSE 4303 - Computer Graphics*
- CSE 4305 - Compilers for Algorithmic Languages*
- CSE 4309 – Artificial Intelligence II
- CSE 4311 - Object-Oriented Software Engineering
- CSE 4313 - Introduction to Signal Processing
- CSE 4319 - Modeling and Simulation
- CSE 4321 - Software Testing and Maintenance
- CSE 4322 - Software Project Management
- CSE 4323 - Quantitative Computer Architecture
- CSE 4331 - Database Implementation and Theory*
- CSE 4344 - Computer Network Organization*
- CSE 4346 - Advanced Computer Networks
- CSE 4348 - Multimedia Systems*
- CSE 4351 - Parallel Processing*
- CSE 4360 - Autonomous Robot Design and Programming
- CSE 4361 - Software Design Patterns
- EE 3317 - Linear Systems
- IE 3315 - Operations Research I

Social/Cultural Electives (SCEL)

Any of the following courses may be used to satisfy the social/cultural elective requirement. The use of any other course for the social/cultural elective must be approved in advance by the department chairperson. Consult the Undergraduate Catalog for course descriptions, prerequisites and special considerations of credit.

ADVERTISING (ADVT)
2337

ANTHROPOLOGY (ANTH)
1306 2322 3311 3325 3328 3330 3331 3333 3336 3338 3348 3350 3353 3355
3366 3369 3370 3371 3372 3373 4342 4348

ARCHITECTURE (ARCH)
2300

ART HISTORY (ART)
4301

BIOLOGY (BIOL)
BUSINESS ADMINISTRATION (BUSA) 2302

CLASSICS (CLAS)
1300 2307 3310 3320 4335

COMMUNICATION (COMM)
1300 4305 4315 4325 4335

CRIMINOLOGY AND CRIMINAL JUSTICE (CRCJ)
3338 3380 4315 4380

ECONOMICS (ECON) 2305 2337

ENGLISH (ENGL)
2309 2319 2329 3301 3306 3339 3340 3351 3352 3370

FRENCH (FREN)
3311 3312 3316 3318

GEOGRAPHY (GEOG)
3350 3355 3371 4301 4310

GERMAN (GERM)
3301 3317 3318

HISTORY (HIST)
2301 2302 3309 3310 3311 3315 3326 3342 3345 3352 3353 3360 3362
3365 3366 3367 3368 3370 3382 4354 4355 4366 4367 4368 4374 4375

HONORS (HONR)
4310

HUMANITIES (HUMA)
2301

KINESIOLOGY (KINE)
3307

LINGUISTICS (LING)
2301 3311 4317 4318

MUSIC (MUSI)
2300

NURSING (NURS)
3355

PHILOSOPHY (PHIL)
1304 1310 2300 2312 2313 3301 3302 3303 3304 3316 3319 3320 3321
4388

POLITICAL SCIENCE (POLS)
3304 3305 3314 3316 3317 3318 4317 4318 4319 4323 4336 4355 4361
4362 4365

PUBLIC RELATIONS (PREL)
2338

PSYCHOLOGY (PSYC)
2310 2317 3301 3310 3311 3312 3313 3315 3316

RUSSIAN (RUSS)
3301 3306 3314 3322 3323
Fine Arts Electives (FAEL)

Any of the following courses may be used to satisfy the fine arts elective requirement. The use of any other course for the fine arts elective must be approved in advance by the department chairperson. Consult the Undergraduate Catalog for course descriptions, prerequisites, and special considerations of credit.

ARCHITECTURE (ARCH)
1301 2300 2303 2304 4305 4308 4309 4310

ART HISTORY (ART)
1301 1309 1310 3302 3305 3306 3307 3308 3310 3311 3312 3313 3314 3315 3320 3325 3331 3389 3391 3392 4302 4303 4304 4306 4317 4330

CLASSICS (CLAS)
3310 3320

DANCE (DNCE)
1300

HONORS (HONR)
2300

MUSIC (MUSI)
1300 1301 1302 2300 2301 3300 3301

THEATER ARTS (THEA)
1342 1343 3307 4303