Blood/Urine Test for Early Cancer Detection

Team: Adeel Sajid1,4,5, Samir Nathu1,2,5, Mohammad R. Hasan1,2,5

Faculty Mentor: Dr. Samir Iqbal1,2,3,5,6

1Nano-Bio Lab, 2Department of Electrical Engineering, 3Department of Bioengineering, 4Department of Biology, 5Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX, USA; 6Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.

Motivation

- 1,685,210 New Cancer Cases (USA, 2016)
- 595,690 Cancer-related Deaths (USA, 2016)
- Relatively unchanged mortality rate for cancer over past 50 years

Solution

- Implement an annual cancer screening that will effectively detect cancer early saving lives and reducing medical costs
- Cost-effective
- At point-of-care
- Scientifically proven
- Utilizes circulating tumor cells as a detection metric
- Reduces subjectivity and error

Background

- Cancer is initially asymptomatic
- Existing methods for cancer screening involve visual inspection & imaging; not effective
- Circulating tumor cells (CTCs) are an effective metric for early cancer detection
- CTCs are very rare in the peripheral blood (one in a billion); challenging to detect

Design

- Lab-on-a-Chip concept
- Micro/Nano-textured PDMS substrate
- Aptamer-functionalized
- Composed of Microfluidic channels
- >90% capture efficiency
- Capable of capturing CTCs present quantities of 1 out of billion healthy cells
- Target over-expressed EGFR biomarker in tumor cells

Analysis

- Image processing and filter
- Identify and digitize Individual cells according to multiple parameters
- Analyze distinctive cell behavior and compare against database containing data from various cancer cell lines

References

- 1950 Mortality Data, CDC/NCHS, NVSS, Mortality Revised. 2011