Research Article

Distortion-Rate Bounds for Distributed Estimation Using Wireless Sensor Networks

Ioannis D. Schizas, Georgios B. Giannakis, and Nihar Jindal

Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, Minneapolis, MN 55455, USA

Received 29 May 2007; Revised 30 October 2007; Accepted 19 December 2007

Recommended by Aleksandar Dogandzic

We deal with centralized and distributed rate-constrained estimation of random signal vectors performed using a network of wireless sensors (encoders) communicating with a fusion center (decoder). For this context, we determine lower and upper bounds on the corresponding distortion-rate (D-R) function. The nonachievable lower bound is obtained by considering centralized estimation with a single-sensor which has all observation data available, and by determining the associated D-R function in closed-form. Interestingly, this D-R function can be achieved using an estimate first compress afterwards (EC) approach, where the sensor (i) forms the minimum mean-square error (MMSE) estimate for the signal of interest; and (ii) optimally (in the MSE sense) compresses and transmits it to the FC that reconstructs it. We further derive a novel alternating scheme to numerically determine an achievable upper bound of the D-R function for general distributed estimation using multiple sensors. The proposed algorithm tackles an analytically intractable minimization problem, while it accounts for sensor data correlations. The obtained upper bound is tighter than the one determined by having each sensor performing MSE optimal encoding independently of the others. Numerical examples indicate that the algorithm performs well and yields D-R upper bounds which are relatively tight with respect to analytical alternatives obtained without taking into account the cross-correlations among sensor data.

Copyright © 2008 Ioannis D. Schizas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Stringent bandwidth and energy constraints that wireless sensor networks (WSNs) must adhere to motivate efficient compression and encoding schemes when estimating random signals or parameter vectors of interest. In such networks, it is of paramount importance to determine bounds on the minimum achievable distortion between the signal of interest and its estimate formed at the fusion center (FC) using the encoded information transmitted by the sensors subject to rate constraints.

In the reconstruction scenario, the FC wishes to accurately reconstruct the sensor observations that are transmitted to the FC in a compressed form. In the estimation scenario, the FC is interested in accurately estimating an underlying random vector which is correlated with, but not equal to, the sensor observations. Thus, the FC utilizes the compressed sensor data to estimate a vector parameter which is conveyed implicitly by the sensor data. In a setup involving one sensor, single-letter characterizations of the D-R function for both scenarios are known: the reconstruction scenario is the standard distortion-rate problem [1, page 336]; and the estimation one, also referred to as a rate-distortion problem with a remote source, has also been determined [2, page 78]. In the distributed setup, involving multiple sensors with correlated observations, neither problem is well understood. The best analytical inner and outer bounds for the D-R function for reconstruction can be found in [3, 4]; see also [5] that determines the rate-distortion region for a two-sensor setup. An iterative scheme has been developed in [6], which numerically determines an achievable upper bound for distributed reconstruction but not for signal estimation. The numerical D-R upper bound obtained in [6] is applicable when the signal to be reconstructed at the FC coincides with the sensor observations. However, this is not the case in the estimation setup considered here, where sensors observe a statistically perturbed version of the signal of interest that the FC wishes to reconstruct.
For the general problem of estimating a parameter vector with analog-amplitude entries correlated with sensor observations, most of the existing literature examine Gaussian data and Gaussian parameters. Specifically, when each sensor observes a common scalar random parameter contaminated with Gaussian noise, the D-R function for estimating this parameter has been determined in [7–11] to solve the so-called Gaussian CEO problem. D-R bounds for a linear-Gaussian data model have been derived in [12, 13] when the number of parameters equals the number of all scalar observations, with one scalar observation per sensor. Under a similar setup, [5] determines the rate-distortion region in a two-sensor WSN. Another formulation was considered in [14], where each sensor has available a vector of observations having the same length as the parameter vector; see also [15] where a two-sensor setup is considered. All existing formulations dealing with vectors of parameters and observations are special cases of the general vector Gaussian CEO problem. In this paper, we pursue D-R analysis for distributed estimation with WSNs, under the vector Gaussian CEO setup, without constraining the number of observations in each sensor and/or the number of random parameters to be estimated.

We first determine in closed form the D-R function for estimating a parameter vector when applying rate-constrained encoding to the observation data collected by a single-sensor (Section 3). Without assuming that the number of parameters equals the number of observations, we prove that the optimal scheme achieving the D-R function amounts to first computing the minimum mean-square error (MMSE) estimate of the source at the sensor, and then optimally compressing at the sensor and reconstructing at the FC the estimate via reverse-water-filling (rwf). The D-R function for the single-sensor setup serves as a nonachievable lower D-R bound for rate-constrained estimation in the multisensor setup. Next, we develop an alternating scheme that numerically determines an achievable D-R upper bound for the multisensor scenario (Section 4). Using this iterative algorithm, we can tackle an analytically intractable minimization problem and determine a D-R upper bound. Different from [6], which deals with WSN-based distributed reconstruction, our approach aims at general estimation problems where the parameters of interest are not directly observed at the sensors. Combining the lower bound of Section 3 with the numerically determined upper bound of Section 4, we specify a region where the D-R function for distributed estimation lies in.

2. PROBLEM STATEMENT

With reference to Figure 1(a), consider a WSN comprising L sensors that communicate with an FC. Each sensor, say the ith, observes an \(N_i \times 1 \) vector \(x_i(t) \) which is correlated with a \(p \times 1 \) random signal (parameter vector) of interest \(s(t) \), where \(t \) denotes discrete time. Similar to [9, 11, 13], we assume the following.

(a1) No information is exchanged among sensors and the links with the FC are noise-free.

(a2) The random vector \(s(t) \) is generated by a stationary Gaussian vector memoryless source with \(s(t) \sim \mathcal{N}(0, \Sigma_s) \); the sensor data \(\{x_i(t)\}_{i=1}^L \) adhere to the linear-Gaussian model \(x_i(t) = H_i s(t) + n_i(t) \), where \(n_i(t) \) denotes additive white Gaussian noise (AWGN); that is, \(n_i(t) \sim \mathcal{N}(0, \sigma_n^2) \); noise \(n_i(t) \) is uncorrelated across sensors, across time, and with \(s \); and \(H_i \) as well as (cross-) covariance matrices \(\Sigma_{ss}, \Sigma_{nx_i}, \Sigma_{x_ix_j} \) are known for all \(i, j \in \{1, \ldots, L\} \).

Notice that (a1) holds when sufficiently strong channel codes are employed to cope with channel effects. Further, whiteness of \(n_i(t) \) and the zero-mean assumptions in (a2) are made without loss of generality. The linear model in (a2) is commonly encountered in estimation and in a number of cases it even accurately approximates nonlinear mappings; for example, via a first-order Taylor expansion in target tracking applications. Although confining ourselves to Gaussian vectors \(x_i(t) \) is of interest on its own, following arguments similar to those in [2, page 134], it can be shown that the D-R functions obtained in this paper upper-bound their counterparts for non-Gaussian sensor data \(x_i(t) \) with (cross-) covariance matrices identical to those in (a2).

Blocks \(x_i^{(n)} := \{ x_i(t) \}_{t=1}^{n-1} \), comprising \(n \) consecutive time instantiations of the vector \(x_i(t) \), are encoded per sensor to yield each encoder’s output \(\{u_i^{(n)} = f_i^{(n)}(x_i^{(n)})\}_{i=1}^{L} \), where \(i = 1, \ldots, L \). These encoded blocks are communicated through ideal orthogonal channels to the FC. There, \(\{u_i^{(n)}\}_{i=1}^{L} \) are decoded to obtain an estimate of \(\{s(t)\}_{t=1}^{n} \), which we denote as \(s^{(n)} := \{s(t)\}_{t=1}^{n} = g_0(u_1^{(n)}, \ldots, u_L^{(n)}) = g_0(x_1^{(n)}, \ldots, x_L^{(n)}) \), since \(u_i^{(n)} \) is a function of \(x_i^{(n)} \). The subscript \(R \) signifies the rate constraint which is imposed through a bound on the cardinality of the range of the sensor encoding functions; namely, the cardinality of the range of \(f_i^{(n)} \) must be no larger than \(2^{nR_i} \), where \(R_i \) is the available rate at the encoder of the ith sensor. The sum rate satisfies the constraint \(\sum_{i=1}^{L} R_i = R \), where \(R \) is the total rate available for the L sensors. It is worth reiterating that this setup is precisely the vector Gaussian CEO problem in its most general form without any restrictions on the number of observations \(N_i \) at the ith sensor, and the number of random parameters \(p \).

Under the sum rate constraint \(\sum_{i=1}^{L} R_i \leq R \), the ultimate goal is to determine the minimum possible MSE distortion \((1/n) \sum_{t=1}^{n} E[\|s(t) - \hat{s}_i(t)\|^2] \) for estimating \(s \) in the limit of infinite block-length \(n \). Such a (so-called single-letter) characterization of the D-R function is available for the single-sensor case \((L = 1) \), but not for the distributed multisensor scenario. For this reason, our objective in this paper is to derive (preferably tight) inner and outer bounds on the D-R function of the general vector CEO setup.

3. DISTORTION RATE FOR CENTRALIZED ESTIMATION

We will first determine in closed form the D-R function for estimating \(s(t) \) in a single-sensor setup and provide a scheme that achieves it. The single-letter characterization of the D-R function in this setup allows us to drop the time index. Here, all observation data \(\{x_i\}_{i=1}^{L} := x \), whose dimensionality
is N, are available to a single sensor, and are related to the $p \times 1$ parameter vector \mathbf{s} according to the linear model $\mathbf{x} = \mathbf{Hs} + \mathbf{n}$. The D-R function in this setting provides a lower (nonachievable) bound on the MMSE that can be achieved in a multisensor distributed setup, where each \mathbf{x} is observed and encoded by a different sensor. Existing works treat the case $N = p$ [16–18] and transform the D-R function with a remote source to an ordinary reconstruction D-R problem; see also [19] which provides more general conditions under which this transformation is possible. Other works deal with practical encoding-decoding schemes using, for example, vector quantization [20]. However, here we look for the D-R function for general N and p, in the linear-Gaussian model framework.

3.1. Background on D-R for reconstruction

The D-R function for encoding \mathbf{x}, which has probability density function (pdf) $p(\mathbf{x})$, with rate R at an individual sensor, and reconstructing it (in the MMSE sense) as $\hat{\mathbf{x}}$ at the FC, is given by [1, page 342]

$$D_2(R) = \min_{\mathbf{p}(\mathbf{x}|\hat{\mathbf{x}})} \mathbb{E}_{p(\mathbf{x}|\hat{\mathbf{x}})}[\|\mathbf{x} - \hat{\mathbf{x}}\|^2], \quad \mathbf{x} \in \mathbb{R}^N, \hat{\mathbf{x}} \in \mathbb{R}^N,$$

where the minimization is with respect to the conditional pdf $p(\mathbf{x} | \hat{\mathbf{x}})$. Let $\Sigma_{xx} = \mathbf{Q}_{xx} \Lambda_{xx} \mathbf{Q}_{xx}^T$ denote the eigenvalue decomposition of Σ_{xx}, where $\Lambda_{xx} = \text{diag}(\lambda_{x,1} \cdots \lambda_{x,N})$ and $\lambda_{x,1} \geq \cdots \geq \lambda_{x,N} > 0$.

For x Gaussian, $D_2(R)$ can be determined by applying rwf to the prewhitened vector $\mathbf{x}_w := \mathbf{Q}_x^T \mathbf{x}$ [1, page 348]. For a prescribed rate R, it turns out that there exists k such that the first k entries $\{\mathbf{x}_w(i)\}_{i=1}^k$ of \mathbf{x}_w are encoded and reconstructed independently from each other using rates $\{R_i = 0.5 \log_2(\lambda_{x,i}/d(k,R))\}_{i=1}^k$, where $d(k,R) = (\prod_{i=1}^k \lambda_{x,i})^{1/k} 2^{-2R/k}$; while the last $N - k$ entries of \mathbf{x}_w are assigned no rate; that is, $\{R_i = 0\}_{i=k+1}^N$ and $R = \sum_{i=1}^k R_i$. The corresponding MMSE for encoding $\mathbf{x}_w(i)$, under a rate constraint R, is $D_i := E[\|\mathbf{x}_w(i) - \hat{\mathbf{x}}_w(i)\|^2] = d(k,R)$ when $i = 1, \ldots, k$ and $D_i = \lambda_{x,i}$ when $i = k + 1, \ldots, N$. The resultant overall MMSE (D-R function) is

$$D_2(R) = E[\|\mathbf{x} - \hat{\mathbf{x}}\|^2] = E[\|\mathbf{x}_w - \hat{\mathbf{x}}_w\|^2] = kd(k,R) + \sum_{i=k+1}^N \lambda_{x,i},$$

where $\hat{\mathbf{x}}_w = \mathbf{Q}_x^T \hat{\mathbf{x}}$. Note that $d(k,R)$ can be bounded as $\max((\lambda_{x,i})_{i=k+1}^N) \leq d(k,R) < \min((\lambda_{x,i})_{i=1}^k)$. Intuitively, $d(k,R)$ is a threshold distortion determining which entries of \mathbf{x}_w are assigned with nonzero rate. The first k entries of \mathbf{x}_w with variance $\lambda_{x,i} > d(k,R)$ are encoded with nonzero rate, but the last $N - k$ ones with variance $\lambda_{x,i} \leq d(k,R)$ are discarded in the encoding procedure (are set to zero).

Associated with the rwf principle is the so-called test channel; see Figure 1(b) and, for example, [1, page 345]. The encoder’s MSE optimal output is $\mathbf{u} = \mathbf{Q}_{x,k}^T \mathbf{x} + \mathbf{z}$, where $\mathbf{Q}_{x,k}$ is formed by the first k columns of \mathbf{Q}_x, and \mathbf{z} models the distortion noise that results due to the rate-constrained encoding of \mathbf{x}. The zero-mean AWGN \mathbf{z} is uncorrelated with \mathbf{x} and its diagonal covariance matrix Σ_{zz} has entries $\{\Sigma_{zz}\}_{ii} = \lambda_{x,i}$. The part of the test channel, that takes as input \mathbf{u} and outputs \mathbf{x}, models the decoder. The reconstruction \mathbf{x} of \mathbf{x} at the decoder output is

$$\hat{\mathbf{x}} = \mathbf{Q}_{x,k} \mathbf{Q}_{x,k}^T \mathbf{u} = \mathbf{Q}_{x,k} \mathbf{Q}_{x,k}^T \mathbf{x} + \mathbf{Q}_{x,k} \mathbf{Q}_{x,k}^T \mathbf{z},$$

where $\mathbf{Q}_{x,k}$ is a diagonal matrix with nonzero entries $\mathbf{Q}_{x,k}^T \mathbf{z}$, $i = 1, \ldots, k$.

3.2. D-R for estimation

The D-R function for estimating source \mathbf{s} given observation \mathbf{x} (where the source and observation are probabilistically drawn from the joint pdf $p(\mathbf{x}, \mathbf{s})$) with rate R at an individual sensor, and reconstructing it (in the MMSE sense) as $\hat{\mathbf{s}}_R$ at the FC is given by [2, page 79]

$$D_2(R) = \min_{p(\mathbf{s}|\hat{\mathbf{x}})} \mathbb{E}_{p(\mathbf{s}|\hat{\mathbf{x}})}[\|\mathbf{s} - \hat{\mathbf{s}}_R\|^2], \quad \mathbf{s} \in \mathbb{R}^p, \hat{\mathbf{s}}_R \in \mathbb{R}^p,$$

where the minimization is with respect to the conditional pdf $p(\hat{\mathbf{s}}_R | \hat{\mathbf{x}})$.

In order to achieve this D-R function, one might be tempted to first compress the observation \mathbf{x} by applying rwf at the sensor, without taking into account the data model relating \mathbf{s} with \mathbf{x}, and subsequently use the reconstructed \mathbf{x} to form the MMSE estimate $\hat{\mathbf{s}}_w = \mathbb{E}[\mathbf{s} | \hat{\mathbf{x}}]$ at the FC. An alternative option would be to first form the MMSE estimate $\hat{\mathbf{s}}_w = \mathbb{E}[\mathbf{s} | \mathbf{x}]$, encode the latter using rwf at the sensor by exploiting only the covariance of $\hat{\mathbf{s}}_w$, and after decoding at the FC obtain the reconstructed estimate $\hat{\mathbf{s}}_w$. Referring to the former option as compress-estimate (CE) and to the latter as estimate-compress (EC), we are interested in determining which one
yields the smallest MSE under a rate constraint R. Another interesting question is whether any of the CE and EC schemes enjoys MMSE optimality in the sense of achieving (4). With subscripts ce and ec corresponding to these two options, let us also define the errors $\hat{s}_{ce} := s - \hat{s}_{ce}$ and $\hat{s}_{ec} := s - \hat{s}_{ec}$.

For CE, we depict in Figure 2(a) the test channel for encoding x via RWF, followed by MMSE estimation of s based on \hat{x}. Suppose that when applying RWF to x with prescribed rate R, the first $k_{ce} \in \{1, \ldots, N\}$ components of \hat{x} are assigned with nonzero rate and the rest are discarded. The MMSE optimal encoder’s output for encoding x is then given, as in Section 3.1, by $u_{ce} = Q^T_{ce} x + \zeta_{ce}$. The covariance matrix of ζ_{ce} has diagonal entries $\|\Sigma_{ce,\ell,\ell}\|_{ii} = \lambda_{ii} D^c_{ce}/(\lambda_{ii} - D^c_{ce})$ for $i = 1, \ldots, k_{ce}$, where $D^c_{ce} := E[|x(i) - \hat{x}(i)|^2]$. Recalling that $D^c_{ce} = (\prod_{i=1}^{k_{ce}} \lambda_{ii})^{1/k_{ce}}$, the reconstructed x in CE is

$$\hat{x} = Q^T_{ce} x_{ce} + \zeta_{ce},$$

where $\Sigma_{ce,\ell,\ell}$ has diagonal entries $\|\Sigma_{ce,\ell,\ell}\|_{ii} = \lambda_{ii} D^c_{ce}/(\lambda_{ii} - D^c_{ce})$ for $i = 1, \ldots, k_{ce}$. Letting $x := Q^T_{ce} x_{ce}$, we have for the MMSE estimate,

$$\hat{s}_{ce} = E[s | \hat{x}] = E[s | Q^T_{ce} x_{ce}] = E[s | \hat{x}_{ce}] = E[s | \hat{x}_{ce}] = E[s | \hat{x}_{ce}],$$

which is unitary and the last $N - k_{ce}$ entries of \hat{x} are useless for estimating s. We show in Appendix A that the covariance matrix $\Sigma_{ce,\ell,\ell}$ of the estimation error

$$\hat{s}_{ce} := E[(s - \hat{s}_{ce})(s - \hat{s}_{ce})^T]$$

of the estimation error \hat{s} is

$$\Sigma_{ce,\ell,\ell} := \Sigma_{s,s} - \Sigma_{s,\hat{s}_{ec}} \Sigma_{\hat{s}_{ec},\hat{s}_{ec}}^{-1} \Sigma_{\hat{s}_{ec},s},$$

where $\Delta_{ce} := \text{diag}(D^c_{ce} \lambda_{1,1}^{-1}, \ldots, D^c_{ce} \lambda_{k_{ce},k_{ce}}^{-1})$. Equations (6) and (7) fully characterize the CE scheme.

In Figure 2(b), we depict the test channel for the EC scheme. The MMSE estimate $\hat{s} = E[s | x]$ is followed by the test channel that results when applying RWF to a prewhitened version of \hat{s}, with rate R. Let $\Sigma_{ec} := \Sigma_{s,s} - \Sigma_{s,\hat{s}_{ec}} \Sigma_{\hat{s}_{ec},\hat{s}_{ec}}^{-1} \Sigma_{\hat{s}_{ec},s}$ be the covariance decomposition for the covariance matrix of \hat{s}, $\hat{s}_{ec} = Q^T_{ec} \hat{s} + \zeta_{ec}$, and the estimate \hat{s}_{ec} is

$$\hat{s}_{ec} = Q^T_{ec} x_{ec} + \zeta_{ec} = \Sigma_{ec,\ell,\ell}^{-1} \Sigma_{s,\hat{s}_{ec}}^{-1} \Sigma_{\hat{s}_{ec},s},$$

where \hat{s}_{ec} is formed by the first k_{ec} columns of Q_{ec}. For the $k_{ec} \times k_{ec}$ diagonal matrices Θ_{ce} and $\Sigma_{ce,\ell,\ell}$, we have $\|\Theta_{ce,\ell,\ell}\|_{ii} = (\lambda_{ii} - D^c_{ce}/\lambda_{ii})$, and $\|\Sigma_{ce,\ell,\ell}\|_{ii} = \lambda_{ii} D^c_{ce}/(\lambda_{ii} - D^c_{ce})$, where $D^c_{ce} := E[(\hat{s}_{ec}(i) - s_{ec}(i))^2]$ and $\hat{s}_{ec} := Q^T_{ec} s_{ec}$. Recall also that $D^c_{ce} = (\prod_{i=1}^{k_{ec}} \lambda_{ii})^{1/k_{ec}}$, for $i = 1, \ldots, k_{ec}$ and $\hat{s}_{ec} = \lambda_{ji,\ell} \times \Sigma_{s,\hat{s}_{ec}}$ when $i = 1, \ldots, k_{ec}$. Upon defining $\Delta_{ec} := \text{diag}(D^c_{ce} \lambda_{1,1}^{-1}, \ldots, D^c_{ce} \lambda_{k_{ec},k_{ec}}^{-1})$, the covariance matrix of \hat{s}_{ec} is

$$\Sigma_{ec,\ell,\ell} := \Sigma_{s,s} - \Sigma_{s,\hat{s}_{ec}} \Sigma_{\hat{s}_{ec},\hat{s}_{ec}}^{-1} \Sigma_{\hat{s}_{ec},s} = \Sigma_{s,s} - \Sigma_{s,\hat{s}_{ec}} \Sigma_{\hat{s}_{ec},\hat{s}_{ec}}^{-1} \Sigma_{\hat{s}_{ec},s} = \Sigma_{s,s} - \Sigma_{s,\hat{s}_{ec}} \Sigma_{\hat{s}_{ec},\hat{s}_{ec}}^{-1} \Sigma_{\hat{s}_{ec},s}.$$
Scalar model \((p = 1, N = 1)\)

Let \(x = hs + n\), where \(h\) is fixed, while \(s, n\) are uncorrelated with \(s \sim \mathcal{N}(0, \sigma_s^2), n \sim \mathcal{N}(0, \sigma_n^2)\), and \(\sigma_s^2 = h^2 \sigma_n^2 + \sigma_o^2\). With \(\sigma_s^2\) and \(\sigma_o^2\) denoting the variances of \(\hat{s}_{EC}\) and \(\hat{s}_{CE}\), respectively, we prove in Appendix D the following.

Proposition 1. If \((a1), (a2)\) hold and \(N = p = 1\), then \(\sigma_s^2 = \sigma_o^2\) and hence the D-R functions for EC and CE are identical, that is, \(D_{EC}(R) = D_{CE}(R)\).

Vector model \((p = 1, N > 1)\)

With \(x = hs + n\), we establish in Appendix E the following.

Proposition 2. If \((a1), (a2)\) hold and \(R \leq R_{th} := 0.5 \log_2(1 + \sigma_s^2 \|h\|^2/\sigma_o^2)\), then \(\epsilon_{ec}(R) = \epsilon_{ce}(R)\), and thus \(D_{ec}(R) = D_{ce}(R)\). For \(R > R_{th}\), then \(\epsilon_{ec}(R) > \epsilon_{ce}(R)\); therefore, \(D_{ec}(R) > D_{ce}(R)\) which implies that EC uses more efficiently the available rate.

Matrix-vector model \((N > 1, p > 1, \Sigma_\omega = \sigma_o^2 I_p)\)

For this setup, we have \(\Sigma_{ec} = \sigma_o^2 H^T\) and \(\Sigma_{ce} = \sigma_o^2 HH^T + \sigma_o^2 I\). Letting \(H = U_\Sigma V_h^T\) be the SVD of \(H\), where \(\Sigma_h\) is an \(N \times p\) diagonal matrix \(\Sigma_h = \text{diag}(\sigma_{h1}, \ldots, \sigma_{hp})\), we show in Appendix F the following.

Proposition 3. If \((a1), (a2)\) hold, \(N > p\), and \(R > R_{th}\) with

\[
R_{th} := \frac{1}{2} \max \left\{ \log_2 \left(\left\lfloor \frac{p}{2} \right\rfloor \right), \log_2 \left(\left\lfloor \frac{1}{\sigma_o^2} \left(\left\lfloor \frac{\sigma_o^2}{\sigma_o^2} \right\rfloor + \left\lfloor \frac{\sigma_o^2}{\sigma_o^2} \right\rfloor \right) \right) \right\},
\]

then \(\epsilon_{ec}(R) > \epsilon_{ce}(R)\), implying that the EC is more rate efficient than CE. If \(N = p\), and there exist \(i, j \in [1, p]\) with \(i \neq j\) such that \(\sigma_{hi} \neq \sigma_{hj}\), then \(\epsilon_{ec}(R) > \epsilon_{ce}(R)\) and consequently \(D_{ec}(R) > D_{ce}(R)\) for all \(R \in [0, \infty)\). Finally, if for \(N = p\), it holds that \(\sigma_{hi} = \cdots = \sigma_{hp}\), then \(D_{ec}(R) = D_{ce}(R)\) for all \(R \in [0, \infty)\).

Defining the signal-to-noise ratio (SNR) as \(\text{SNR} = \text{tr}(HH^T)/(N\sigma_o^2)\), we compare in Figure 3 the MMSE when estimating \(s\) with the CE and EC schemes. With \(\Sigma_\omega = \sigma_o^2 I_p, p = 4, N = 40\), we observe that beyond a threshold rate, the distortion of EC converges to \(J_0\) faster than that of CE, which corroborates Theorem 1. Notice also that the gap between the EC and CE curves for \(\text{SNR} = 2\) is larger than the gap for \(\text{SNR} = 4\). This is true because as the noise power increases, the portion of the rate allocated to noise terms in CE increases accordingly. However, thanks to the MMSE estimator, EC cancels part of the noise and utilizes the available rate more efficiently.

Our analysis so far raises the question whether EC is MSE optimal. We have shown that this is the case when estimating \(s\) with a given rate \(R\) without forcing any relationship between \(N\) and \(p\). A related claim has been reported in [17, 18] for \(N = p\), but the extension to \(N \neq p\) is not obvious. To this end, we prove in Appendix G the following.

Theorem 2. Under \((a1)\) and \((a2)\), the D-R function when estimating \(s\) based on \(x\) can be expressed as

\[
D_s(R) = \min_{p \in \{0, 1\}} \left\{ \frac{E_p[|s - \hat{s}_R(u_1, u_2)|^2]}{R} \right\},
\]

where \(\hat{s}_R := \hat{s}_R(u_1, u_2)\) is the MMSE estimator, and \(s - \hat{s}\) is the corresponding MMSE.

Theorem 2 reveals that the optimal means of estimating \(s\) is to first form the optimal MMSE estimate \(\hat{s}\) and then apply optimal D-R encoding to this estimate. The lower bound on this distortion when \(R \to \infty\) is \(J_0 = E[|s - \hat{s}|^2]\), which is intuitively appealing. The D-R function in (12) is achievable because the rightmost term in (12) corresponds to the D-R function for reconstructing the MMSE estimate \(\hat{s}\) which is known to be achievable using random coding; see, for example, [2, page 66]. Theorem 2 implies an important separation result regarding estimation of (remote) Gaussian sources. Optimal estimation can be performed by separately estimating the source \(s\) based on the observation \(x\), and then compressing the estimate \(\hat{s}\) based only on the covariance of \(\hat{s}\). The important consequence of this result is that the total distortion \(D_s(R)\) can be minimized after minimizing separately: (i) the MSE distortion associated with the estimation of \(s\) based on \(x\); and (ii) the MSE distortion related to the compression/reconstruction task that is given by the second term in the right-hand side (RHS) of (12).

4. DISTORTION RATE FOR DISTRIBUTED ESTIMATION

Let us now consider the D-R function for estimating \(s\) in a multisensor setup, under a total available rate \(R\) which has to be shared among all sensors. Because analytical specification of the D-R function in this case remains intractable, we will develop an alternating algorithm that numerically determines an achievable upper bound for it. Combining this upper bound with the nonachievable lower bound corresponding to an equivalent single-sensor setup, when applying the MMSE optimal EC scheme, will provide a (hopefully tight) region where the D-R function lies in. For simplicity in exposition, we confine ourselves to a two-sensor setup, but our results can be extended readily to any \(L > 2\).

To this end, we consider the following single-letter characterization of the upper bound on the D-R function:

\[
\overline{D}(R) = \min_{p \in \{0, 1\}} \frac{E_p[|s - \hat{s}_R(u_1, u_2)|^2]}{R},
\]

where the minimization is with respect to \(p(u_i | x_i)\) and \(\hat{s}_R := \hat{s}_R(u_1, u_2)\). Achievability of \(\overline{D}(R)\) can be established by readily extending to the vector case the scalar results in [7]. To carry out the minimization in (13), we develop an alternating scheme whereby \(u_1\) is treated as side information that is available at the decoder when optimizing (13).
with respect to \(p(u_1 \mid x_1) \) and \(\hat{s}_R(u_1, u_2) \). The minimization is carried within the class of Gaussian auxiliaries \(u_1, u_2 \). As a starting point, we assume that the side information \(u_2 \) is the output of an optimal D-R encoder applied to \(x_2 \) for estimating \(s \), without taking into account \(x_1 \). This initialization for \(u_2 \) is motivated by the Gaussianity of \(s \) and \(x_2 \), as well as the single-sensor D-R results in Section 3.2. Since \(x_2 \) is Gaussian, the side information will have the form (cf. Section 3.2) \(u_2 = Q_2 x_2 + \zeta_2 \), where \(Q_2 \in \mathbb{R}^{k_2 \times N_2} \) and \(k_2 \leq N_2 \), due to the rate-constrained encoding of \(x_2 \). Recall also that the \(k_2 \times 1 \) vector \(\zeta_2 \) is uncorrelated with \(x_2 \) and \(\tilde{s} \), that is, \(\zeta_2 \sim \mathcal{N}(0, \Sigma_{\zeta^2}) \).

Based on \(\psi := [x_1^T \ u_2^T]^T \), which is the information that the decoder can have assuming infinite rate at the first encoder, the optimal estimator for \(s \) is the MMSE one: \(\hat{s} := E[s \mid x_1, u_1] = \Sigma_{x_1} \Sigma_{\psi}^{-1} \psi = \Sigma_{x_1} L_1 x_1 + L_2 u_2 \), where \(L_1, L_2 \) are \(p \times N_1 \) and \(p \times k_2 \) matrices such that \(\Sigma_{x_1} \Sigma_{\psi}^{-1} = [L_1 \ L_2] \). If \(\hat{s} \) is the corresponding MSE, then \(s = \hat{s} + \tilde{s} \), where \(\tilde{s} := s - \hat{s} \) is uncorrelated with \(\psi \) and \(\hat{s} \) due to the orthogonality principle. Noticing also that \(\hat{s}_R(u_1, u_2) \) is uncorrelated with \(\tilde{s} \) because it is a function of \(x_1 \) and \(u_2 \), we obtain \(E(||s - \hat{s}_R(u_1, u_2)||^2) = E(||\tilde{s} - \hat{s}_R(u_1, u_2)||^2) + E(||\tilde{s}||^2) \) or

\[
E(||s - \hat{s}_R(u_1, u_2)||^2) = E(||L_1 x_1 - (\hat{s}_R(u_1, u_2) - L_2 u_2)||^2) + E(||\tilde{s}||^2). \tag{14}
\]

Since \(x_1 \) and \(x_2 \) are correlated, and \(u_1 \) is stochastically related with \(x_1 \) through the conditional pdf \(p(u_1 \mid x_1) \), we have the Markov chain (MC) \((x_1, u_2) \rightarrow x_1 \rightarrow u_1 \). Using MC properties, we obtain after some simple algebra that \(I(x_1; u_2) = R_2 + I(x_1; u_1) - I(u_2; u_1) \), where \(R_2 := I(x; u_2) \) is the rate consumed to form the side information \(u_2 \); while the rate constraint in (13) becomes \(I(x_1; u_1, u_2) \leq R \) or \(I(x_1; u_1) - I(u_2; u_1) \leq R - R_2 := R_1 \). The new signal of interest that we wish to reconstruct in (14) is \(L_1 x_1 \). Continuing, we prove in Appendix H that

\[
I(x_1; u_1) = I(L_1 x_1; u_1). \tag{15}
\]

Using (15), we obtain \(I(x_1; u_1) - I(u_2; u_1) = I(L_1 x_1; u_1) - I(u_2; u_1) \), and from the RHS of the last equation, we deduce the equivalent rate constraint \(I(L_1 x_1; u_1) - I(u_2; u_1) \leq R_1 \). Combining the latter with (14) and (13), we arrive at the D-R upper bound

\[
\overline{D}(R_1) = \min_{p(u_1 \mid x_1, u_2)} E[||L_1 x_1 - (\hat{s}_R(u_1, u_2) - L_2 u_2)||^2]
+ E(||\tilde{s}||^2) \tag{16}
\]

through which we can determine an achievable D-R region, having available rate \(R_1 \) at the encoder and side information \(u_2 \) at the decoder. Since \(x_1 \) and \(u_2 \) are jointly Gaussian, we can apply the Wyner-Ziv result [21], which allows us to consider that \(u_2 \) is available both at the decoder and the encoder. This, in turn, permits rewriting the first expectation in (16) as

\[
\min_{p(s_1 \mid L_1 x_1, u_2)} E[||L_1 x_1 - (\hat{s}_R(u_1, u_2) - L_2 u_2)||^2]. \tag{17}
\]

If \(\hat{s}_1 := E[L_1 x_1 | u_2] = L_1 \Sigma_{x_1; u_2} \Sigma_{u_2}^{-1} u_2 \) and \(\hat{s}_1 \) is the corresponding MSE, then we can write \(L_1 x_1 = \hat{s}_1 + \tilde{s}_1 \). For the rate constraint in (17), we have

\[
I(L_1 x_1; \hat{s}_R, u_2) = I(L_1 x_1 - \hat{s}_1; \hat{s}_R - L_2 u_2 - \hat{s}_1 | u_2)
= I(\tilde{s}_1; \hat{s}_R - L_2 u_2 - \hat{s}_1), \tag{18}
\]
where the first equality holds because \(u_2 \) is given; the second one holds since \(u_2 \) is uncorrelated with \(\hat{s}_1 \), due to the orthogonality principle; and likewise, \(u_2 \) can be uncorrelated with \(\hat{s}_{R,12}(u_1, u_2) := \hat{s}_1(u_1, u_2) - L_2 u_2 - \hat{s}_1 \), since \(\hat{s}_{R,12} \) is the reconstructed version of \(\hat{s}_1 \) which is uncorrelated with \(u_2 \).

Utilizing (17) and (18), we arrive at

\[
\bar{D}(R_i) = E[\|\hat{s}\|^2] + \min_{p(\hat{s}_1, \hat{s}_R)} \min_{I(\hat{s}_1, \hat{s}_{R,12})} F(R_i) \frac{1}{2} \|\hat{s}_1 - \hat{s}_{R,12}(u_1, u_2)\|_2^2.\tag{19}
\]

Notice that the minimization term in (19) is the D-R function for reconstructing the MSE \(\hat{s}_1 \) with rate \(R_i \). Since \(\hat{s}_1 \) is Gaussian, we can readily apply rfw to the prewhitened vector \(Q_{\hat{s}_1}^T \hat{s}_1 \) for determining \(\bar{D}(R_i) \) and the corresponding test channel that achieves \(\bar{D}(R_i) \) (cf. Section 3.1). Through the latter, and considering the eigenvalue decomposition \(\Sigma_{\hat{s}_1} = \Sigma_{\hat{s}_1}^P \) for \(\Sigma_{\hat{s}_1} \), we find that the first encoder’s output that minimizes (13) given side information \(u_2 \) has the form

\[
u_1 = Q_{\hat{s}_1}^T L_1 \nu_1 + \xi_1 = Q_1 \nu_1 + \xi_1, \tag{20}\]

where \(Q_{\hat{s}_1} \) denotes the first \(k_1 \) columns of \(Q_{\hat{s}_1} \), \(k_1 \) is the number of \(Q_{\hat{s}_1}^T \) entries that are assigned with nonzero rate, and \(Q_1 := Q_{\hat{s}_1} L_1 \). The \(k_1 \times 1 \) AWGN \(\xi_1 \sim \mathcal{N}(0, \Sigma_{\hat{s}_1} L_1) \) is uncorrelated with \(\nu_1 \). Additionally, we have \(\Sigma_{\hat{s}_1} L_1 \nu_1 = \lambda_{\hat{s}_1,i} D_1 (\lambda_{\hat{s}_1,i} - D_1) \), where \(D_1 = (\prod_{i=1}^{k_1} \lambda_{\hat{s}_1,i})^{1/k_1} \), and \(D_1 \) is the appropriate index when \(i = k_1 + 1, \ldots, p \). This way,

we are able to determine also \(p(\nu_1 | \nu_1) \). The reconstruction function has the form

\[
\hat{s}_R(u_1, u_2) = Q_{\hat{s}_1} \Theta_1 \nu_1 - Q_{\hat{s}_1} \Theta_1 Q_{\hat{s}_1}^T L_1 \Sigma_{\hat{s}_1}^{-1} u_2 + L_1 \Sigma_{\hat{s}_1}^{-1} u_2 + L_2 u_2, \tag{21}\]

where \([\Theta_1]_{i,j} = (\lambda_{\hat{s}_1,i} - D_1) / \lambda_{\hat{s}_1,i} \) and the corresponding MMSE is \(\bar{D}(R_i) = \sum_{j=1}^p D_1 j + E[\|\hat{s}\|^2] \). Notice that due to the uncorrelatedness of \(u_2 \) with \(\nu_1 - E[\nu_1 | u_2] \), the vector \(\hat{s}_1 \) can also be expressed as \(\hat{s}_1 = E[\nu_1 | \nu_1 - E[\nu_1 | u_2]] \), and the MMSE estimate \(\hat{s} \) can be rewritten as \(\hat{s} = E[\nu_1 | u_2] + E[\nu_1 | \nu_1 - E[\nu_1 | u_2]] \). Interestingly, it can be seen from (19) and the last expression for \(\hat{s}_1 \) that the MSE optimal approach for estimating \(s \) with side information \(u_2 \) is exactly the EC scheme with the difference that in the compression step we apply rfw to the part of the MMSE estimate \(\hat{s} \) that is formed by the “innovation” signal \(\nu_1 - E[\nu_1 | u_2] \), namely, \(E[\nu_1 | \nu_1 - E[\nu_1 | u_2]] \). Note that the optimal encoder for sensor 1 in (20) has the same structure as the one assumed for the side information \(u_2 \) at the initialization step. Thus, we can proceed as described earlier to determine the optimal encoder for sensor 2 after treating \(u_1 \) in (20) as side information.

The approach in this subsection can be applied in an alternating fashion from sensor to sensor in order to determine appropriate \(p(\nu_1 | \nu_1) \), for \(i = 1, 2 \), and \(\hat{s}_R(u_1, u_2) \) that at best globally minimize (16). The importance of the algorithm lies on the fact that it provides a way to numerically tackle (16) and determine an achievable D-R upper bound when estimating \(s \) at the EC based on compressed sensor observations. The conditional pdfs can be determined by finding the appropriate covariances \(\Sigma_{\hat{s}_1} \). Furthermore, by specifying the

Algorithm 1

Initialize \(Q_{\nu_1}^{(0)}, Q_{\nu_2}^{(0)}, \Sigma_{\nu_1}^{(0)}, \Sigma_{\nu_2}^{(0)} \) by applying optimal D-R encoding to each sensor’s test channel independently.

For a total rate \(R \), generate \(M \) random increments \(\{r(m)\}_{m=0}^M \), such that \(0 \leq r(m) \leq R \) and \(\sum_{m=0}^M r(m) = R \).

Set \(R_0 = 0 \), and for \(j = 1, \ldots, M \),

- set \(R_j = \sum_{i=0}^j r(i) \).

For \(i = 1, 2 \)

- \(i = \text{mod} (i, 2) + 1 \% \) The complementary index

- \(R_i(j) = I(\nu_1; \nu_2^{(i)}) \) is the side information provided by the \(i \)-th sensor

Use \(Q_{\nu_1}^{(i-1)}, \Sigma_{\nu_1}^{(i-1)} \), \(R(j) \), \(R_i(j) \) to determine \(Q_{\nu_1}^{(i)}, \Sigma_{\nu_1}^{(i)} \) and distortion \(\bar{D}(R_i(j)) \) from (20) and (21).

Update the matrices \(Q_{\nu_1}^{(i)}, \Sigma_{\nu_1}^{(i)} \) that result in the smallest distortion \(\bar{D}(R_i(j)) \), with \(i \in [1, 2] \).

Set \(R_j = R(j) - I(\nu_1; \nu_2^{(i)}) \) and \(R_1(j) = I(\nu_1; \nu_2^{(i)}) \).
optimal Q_1 and Q_2, we have a complete characterization of the encoders’ structure. Relative to [6], the algorithm here can be applied to derive D-R upper bounds in general estimation setups where the parameter vector s, that the FC wishes to estimate-reconstruct based on compressed sensor data, is observed at the sensors via x_j’s. The scheme in [6] can be viewed as a special case of the present one corresponding to x_j = s. The resultant algorithm is summarized in Algorithm 1.

In Figure 4, we plot the nonachievable lower bound which corresponds to one sensor having available the entire x and using the optimal EC scheme. The same figure also depicts an achievable D-R upper bound determined by letting the i-th sensor form its local estimate ̂s_i = E[s | x_i], and then apply optimal D-R encoding to ̂s_i. If ̂s_{R,1} and ̂s_{R,2} are the reconstructed versions of ̂s_1 and ̂s_2, respectively, then the decoder at the FC forms the final estimate as ̂s_R = E[s | ̂s_{R,1}, ̂s_{R,2}]. We refer to this approach as the decoupled EC strategy. This is expected since the proposed algorithm provides a tighter upper bound for the achievable D-R region than the one obtained using the decoupled EC scheme. We also plot the achievable D-R region determined numerically by the alternating algorithm. For each rate, we keep the smallest distortion returned after 500 executions of the algorithm simulated with Σ_{ss} = Σ_p, p = 4, and N_1 = N_2 = 20, at SNR = 2. We observe that the proposed algorithm provides a tighter upper bound for the achievable D-R region than the one obtained using the decoupled EC strategy. This is expected since the proposed algorithm takes into account the cross-correlations among the sensor data when determining the encoders, whereas the decoupled EC approach does not. This way the rate wasted to encode redundant information is reduced. Using also the nonachievable lower bound (solid line), we have effectively reduced the “uncertainty region” where the D-R function lies.

5. CONCLUSIONS

We derived inner and outer D-R bounds for the generalized Gaussian CEO problem. Specifically, we determined the D-R function for estimating a random vector in a single-sensor setup and established optimality of an estimate-first compress-afterwards (EC) approach along with the (sub)optimality of a compress-first estimate-afterwards (CE) alternative. When it comes to estimation using multiple sensors, the corresponding D-R function can be bounded from below using the single-sensor D-R function achieved using the EC scheme. An alternating algorithm was also derived for determining numerically an achievable D-R upper bound in the distributed multisensor setup. Simulations demonstrated that the numerically determined upper bound is more tight than analytically found alternatives (cf. the decoupled EC scheme), which is expected since the novel algorithm accounts for the cross-correlations among sensor data during the design of the encoders.

Issues of interest not accounted by this paper’s analysis include general (possibly nonlinear) dynamical data models where the distribution of the observation data is no longer stationary or Gaussian.

APPENDICES

A. PROOF OF (7)

Using (6), we find that the covariance matrix of ̂s_c is given by

Σ_{ ks_c} = Σ_{ ks} − Σ_{ k i_s} Σ_{ k i_s} Σ_{ s s}.

From the definition of ̂x_1, it also follows that

Σ_{ sx_1} = Σ_{ ss} Q_{ s k_s} Θ_{ s c},

Σ_{ k i_s} = Θ_{ s c} (A_{ s k_c} + Σ_{ k k_c}),

where A_{ s k_c} denotes the first k_c diagonal entries of A_s. Apparently, the k_c × k_c matrix Σ_{ k i_s} is diagonal with entries |Σ_{ k i_s}| = |Θ_{ s s}| |Σ_{ s k_s}| = λ_{s i} − D_{ s c}^2. Let us define the diagonal matrix D_{ s c} := diag(D_{ s c}, ..., D_{ s c}) and let D_{ k_c} denote the upper left k_c × k_c submatrix of D_{ s c}. We then have

Σ_{ k i_s} = Λ_{ s k_c} − D_{ k_c}^2, using which we can write

Σ_{ sx_1} Σ_{ k i_s} Σ_{ s s} = Σ_{ ss} Q_{ s k_s} Θ_{ s c} (A_{ s k_c} − D_{ s c}^2)^{-1} Θ_{ s c} Q_{ s k_s}^T Σ_{ ss}.

Let D_{ s c}^2 and Λ_{ s k_c} denote the lower right submatrix of D_{ s c} and Λ_s, respectively; and similarly, let Q_{ s k_c} be formed by the last N − k_c columns of Q_s. Because the last N − k_c entries of Q_{ s x_1} are not assigned any rate, we have

D_{ s c}^2 = Λ_{ s k_c}. Adding and subtracting from (A.2), the matrix Σ_{ ss} Q_{ s k_s} Λ_{ s k_c} Λ_{ s k_c}^2 Q_{ s k_s}^T Σ_{ ss} and also adding the matrix Σ_{ ss} we arrive at the RHS of (7).
B. PROOF OF (9)

Starting from the definition of the covariance matrix of \(\hat{z}_{ec} \), we have

\[
\Sigma_{\hat{z}_{ec}} = E[(s - \hat{z}_{ec})(s - \hat{z}_{ec})^T] = \Sigma_{ss} - \Sigma_{s\hat{z}_{ec}} + \Sigma_{\hat{z}_{ec}\hat{z}_{ec}}.
\]

An expression that will prove useful result for our subsequent analysis is

\[
\Sigma_{\hat{z}_{ec}} = E[ss^T] - \Sigma_{ss}^{-1} \Sigma_{sx} = \Sigma_{sx}^{-1} \Sigma_{sx} - \Sigma_{sx}
\]

(B.1)

Furthermore, we will use the (cross-) covariance matrices

\[
\Sigma_{sx} = \Sigma_{s\hat{z}_{ec}} = \Sigma_{sx}^{-1} \Sigma_{sx} = Q_{\hat{z}_{ec}} A_{\hat{z}_{ec}} Q_{\hat{z}_{ec}}^T.
\]

(B.2)

Substituting (B.2) into \(\Sigma_{\hat{z}_{ec}} \), we obtain

\[
\Sigma_{\hat{z}_{ec}} = \Sigma_{sx}^{-1} \Sigma_{sx} + Q_{\hat{z}_{ec}} A_{\hat{z}_{ec}} Q_{\hat{z}_{ec}}^T.
\]

(B.3)

where \(\Omega := \Sigma_{\hat{z}_{ec}}^{-1} (\Lambda_{\hat{z}_{ec}} + \Sigma_{\hat{z}_{ec}}) = 2 \Lambda_{\hat{z}_{ec}} - \Sigma_{\hat{z}_{ec}} \Lambda_{\hat{z}_{ec}} \Lambda_{\hat{z}_{ec}} \) and \(\Delta_{\hat{z}_{ec}} \) denotes the \(k_{ec} \times k_{ec} \) upper left submatrix of \(\Delta_{\hat{z}_{ec}} \). Since \(D_{\hat{z}_{ec}}^T = \Sigma_{\hat{z}_{ec}} \), for \(i = k_{ec} + 1, \ldots, p \), we have \(\Lambda_{\hat{z}_{ec}} \Lambda_{\hat{z}_{ec}} \) and \(\Lambda_{\hat{z}_{ec}} \Lambda_{\hat{z}_{ec}} \Lambda_{\hat{z}_{ec}} \) denote the \((p - k_{ec}) \times (p - k_{ec}) \) lower right submatrices of \(\Lambda_{\hat{z}_{ec}} \Lambda_{\hat{z}_{ec}} \) and \(\Delta_{\hat{z}_{ec}} \) respectively. Adding and subtracting the matrix \(Q_{\hat{z}_{ec}} A_{\hat{z}_{ec}} Q_{\hat{z}_{ec}}^T \) from (B.3), where \(Q_{\hat{z}_{ec}} A_{\hat{z}_{ec}} \) is formed by the last \(p - k_{ec} \) columns of \(Q_{\hat{z}_{ec}} \), we arrive at (9).

C. PROOF OF THEOREM 1

Consider first the EC scheme with \(k_{ec} = N \). In this case, the rwf threshold is given by

\[
d_{ec}(N, R) = D_{\hat{z}_{ec}}^T = \left(\prod_{i=1}^{p} \lambda_{\hat{z}_{ec}} \right)^{1/N} (\sigma^2)^{(N-p)/N} 2^{-2N}, \quad i = 1, \ldots, N.
\]

(C.1)

Since for \(k_{ec} = N \) all entries of \(\hat{Q}_{\hat{z}_{ec}}^T \) are assigned with nonzero rate, we infer that \(d_{ec}(N, R) < \sigma^2 \) or equivalently

\[
R > (1/2) \log_2 \left(\prod_{i=1}^{p} \lambda_{\hat{z}_{ec}} \right)^{1/N} (\sigma^2)^{(N-p)/N} 2^{-2N} \Rightarrow R_{ce}.
\]

(C.2)

Focusing on the EC scheme for \(k_{ec} = \rho \), we have

\[
d_{ec}(\rho, R) = D_{\hat{z}_{ec}}^T = \left(\prod_{i=1}^{p} \lambda_{\hat{z}_{ec}} \right)^{1/\rho} 2^{-2R/\rho}, \quad i = 1, \ldots, p.
\]

(C.3)

When \(k_{ec} = \rho \), all entries of \(\hat{Q}_{\hat{z}_{ec}}^T \) are assigned with nonzero rate. The latter implies that \(d_{ec}(\rho, R) < \lambda_{\hat{z}_{ec}} \), which translates into

\[
R > (1/2) \log_2 \left(\prod_{i=1}^{p} \lambda_{\hat{z}_{ec}} \right)^{1/\rho} \Rightarrow R_{ce}.
\]

(C.4)

If \(R > \max(R_c, R_{ec}) \), then we have \(k_{ec} = N \) and \(k_{ec} = \rho \). Additionally, we can easily obtain

\[
\Delta_{\hat{z}_{ec}} = 2^{-2R/N} \Delta_{\hat{z}_{ec}} \sigma^2 \left(\frac{\lambda_{\hat{z}_{ec}}^2}{\lambda_{\hat{z}_{ec}}^2} \right),
\]

\[
\Delta_{\hat{z}_{ec}} = \sigma^2 \left(\frac{\lambda_{\hat{z}_{ec}}^2}{\lambda_{\hat{z}_{ec}}^2} \right) 2^{-2R/N} \Rightarrow R_{ce}.
\]

(C.5)

D. PROOF OF PROPOSITION 1

For the CE scheme, \(\Delta_{\hat{z}_{ec}} = \sigma^2 \sigma^2 = (h^2 \sigma^2 + \sigma^2)^{-1} 2^{-2R} \) while the variance of \(\hat{s}_{ec} \) is \(\sigma^2 = h^2 \sigma^2 + \sigma^2 \). Since \(\alpha_{1}, \alpha_{2}, \sigma_{1}, \sigma_{2} \), and \(\{ \sigma_{1, i, j} \} \) do not depend on \(R \), it follows readily that \(\epsilon_{ec}(R) = \rho \Sigma_{\hat{z}_{ec}} Q_{\hat{z}_{ec}} Q_{\hat{z}_{ec}}^T \hat{s}_{ec} = \gamma_1 2^{-2R/N} \) and \(\epsilon_{ec}(R) = \rho \Sigma_{\hat{z}_{ec}} Q_{\hat{z}_{ec}} Q_{\hat{z}_{ec}}^T \hat{s}_{ec} = \gamma_2 2^{-2R/N} \), where \(\gamma_1, \gamma_2 \) are constants, not dependent on \(R \).

E. PROOF OF PROPOSITION 2

Using the vector model \(\mathbf{x} = \mathbf{h} \mathbf{s} + \mathbf{n} \), we can easily verify that \(\Lambda_{\mathbf{s}} = \text{diag}(\sigma^2, \sigma^2, \ldots, \sigma^2) \) and \(\mathbf{Q}_{\mathbf{x}} = [\mathbf{Q}_{\mathbf{s}1}, \ldots, \mathbf{Q}_{\mathbf{s}N}] \), where \(\mathbf{Q}_{\mathbf{s}1} = (h/|\mathbf{h}|) \). In the CE scheme, if \(d_{ec}(k_{ec}, R) > \sigma^2 \), then only the first entry of \(\hat{Q}_{\mathbf{s}}^T \mathbf{x} \) is assigned with positive rate; while if \(d_{ec}(k_{ec}, R) \leq \sigma^2 \), then all the elements of \(\hat{Q}_{\mathbf{s}}^T \mathbf{x} \) are assigned with nonzero rate. Thus, \(k_{ec} \) can be either 1 or \(N \). When \(k_{ec} = 1 \), the rwf threshold is given by

\[
d_{ec}(1, R) = \sigma^2 |\mathbf{h}|^2 + \sigma^2 2^{-2R} \Rightarrow R_{ce}.
\]

Because for \(k_{ec} = 1 \), we must have \(d_{ec}(1, R) \geq \sigma^2 \), we deduce that

\[
R \leq (1/2) \log_2 \left(1 + \frac{\sigma^2 |\mathbf{h}|^2}{\sigma^2} \right) = R_{th}. \quad \text{(E.1)}
\]

If \(R > R_{th} \), we have \(k_{ec} = N \) and the threshold is \(d_{ec}(N, R) = \sigma^2 |\mathbf{h}|^2 + \sigma^2 2^{-2R} \leq 2^{-2R/N} \), while the distortion term \(\epsilon_{ec}(R) = \rho \Sigma_{\mathbf{s}} \mathbf{Q}_{\mathbf{A}} \mathbf{Q}_{\mathbf{s}}^T \Sigma_{\mathbf{A}} \mathbf{Q}_{\mathbf{s}}^T \mathbf{h} \) is given by

\[
\epsilon_{ec}(R) = \sigma^2 \text{mat}(\hat{Q}_{\mathbf{s}}^T \mathbf{Q}_{\mathbf{A}} \mathbf{Q}_{\mathbf{s}}^T \mathbf{h}) \Rightarrow R_{th}, \quad R > R_{th}.
\]

(E.2)
F. PROOF OF PROPOSITION 3

From the matrix-vector model $x = Hs + n$, it follows immediately that $Q_s = U_h$ and $A_s = \text{diag}(\sigma_1^2, \sigma_2^2, \ldots, \sigma_r^2)$, where $r = \text{rank}(H)$. The covariance of \hat{s} can be written as $\Sigma_{\hat{F}} = \Sigma_{Hh}^T (\Sigma_{Hh} \Sigma_{Hh}^T + \sigma^2 I)^{-1} \Sigma_{Hh}$. Furthermore, we can easily verify that $Q_s = V_h$ and

$$A_s = \text{diag}(\sigma_1^2, \sigma_2^2, \ldots, \sigma_r^2) = (\sigma_1^2, \sigma_2^2, \ldots, \sigma_r^2)$$

(F.1)

Focusing on the CE scheme, we have $\Sigma_{\hat{s}} Q_s A_s Q_s^T \Sigma_{\hat{s}} = \sigma_1^2 V_h \Sigma_{Hh} V_h^T$ and the trace of the last matrix is $e_{cc}(R) = \sigma_1^2 \Sigma_{Hh}^T D_1^T (\sigma_1^2 + \sigma^2)^{-1}$. When $k_{cc} = N$, all the components in $Q_s^T x$ are assigned with nonzero rate and the rfw threshold is

$$d_{cc}(N, R) = D_f^c$$

$$= \left(\prod_{i=1}^{\rho} (\sigma_i^2 + \sigma^2) \right)^{1/N} (\sigma^2)^{(N-\rho)/N} 2^{-2R/N}$$

$$i = 1, \ldots, N.$$

(F.2)

Notice also that $d_{cc}(N, R) < \sigma^2$ implies

$$R > (1/2) \log_2 \left(\prod_{i=1}^{\rho} (1 + (\sigma_i^2 / \sigma_{i+1}^2) (\sigma_i^2 + \sigma^2)^{-1}) \right) := R_{cc}. $$

(F.3)

In the EC scheme, the trace of $Q_s A_s Q_s^T \Sigma_{\hat{s}}$ is equal to $e_{cc}(R) = \text{tr}(A_s) = \Sigma_{i=1}^{N} \sigma_i^2$. When $k_{cc} = \rho$, the corresponding rfw threshold is given by

$$d_{cc}(\rho, R) = D_f^c$$

$$= \left(\prod_{i=1}^{\rho} (\sigma_i^2/\sigma_{i+1}^2)(\sigma_i^2 + \sigma^2)^{-1} \right)^{1/\rho} 2^{-2R/\rho}, $$

$$i = 1, \ldots, \rho. $$

(F.4)

The equality $k_{cc} = \rho$ can be satisfied when $d_{cc}(\rho, R) < (\sigma_1^2/\sigma_{\rho+1}^2)(\sigma_1^2 + \sigma^2)^{-1}$, which yields the rate constraint

$$R > (1/2) \log_2 \left(\prod_{i=1}^{\rho} (\sigma_i^2/\sigma_{i+1}^2)(\sigma_i^2 + \sigma^2)^{-1} \right)^{1/\rho} := R_{cc}. $$

(F.5)

Notice that when $R > \max(R_{cc}, R_{cc})$, we have $k_{cc} = N$, $k_{cc} = \rho$, while

$$e_{cc}(R) = \sigma_1^2 \sigma_2^2 2^{-2R/N} \left(\prod_{i=1}^{\rho} \left((\sigma_i^2/\sigma_{i+1}^2)(\sigma_i^2 + \sigma^2)^{-1} \right) \right)^{1/N}$$

$$\times \sum_{i=1}^{\rho} \sigma_i^2 (\sigma_i^2/\sigma_{i+1}^2 + \sigma^2)^{-2}, $$

(F.6)

$$e_{cc}(R) = \rho \sigma_1^2 2^{-2R/\rho} \left(\prod_{i=1}^{\rho} (\sigma_i^2/\sigma_{i+1}^2)(\sigma_i^2 + \sigma^2)^{-1} \right)^{1/\rho}.$$

For $N > \rho$ and after some algebraic manipulations, we conclude that for $e_{cc}(R) > e_{cc}(R)$ to hold, we must have

$$R > (1/2) \log_2 \left(\prod_{i=1}^{\rho} (1 + (\sigma_i^2/\sigma_{i+1}^2)(\sigma_i^2 + \sigma^2)^{-1} \right) + N\rho (2(N-\rho))^{-1} \log_2 \gamma$$

$$:= R,$$

(F.7)

where

$$\gamma = \left(\prod_{i=1}^{\rho} (\sigma_i^2/\sigma_{i+1}^2)(\sigma_i^2 + \sigma^2)^{-1} \right)^{1/\rho} \left(\rho \sum_{i=1}^{\rho} (\sigma_i^2/\sigma_{i+1}^2)(\sigma_i^2 + \sigma^2)^{-1} \right)^{-1}. $$

(F.8)

From the arithmetic mean-geometric mean inequality, we further deduce that $\gamma \leq 1$, which in turn implies that $\max(R_{cc}, R_{cc}) \geq R$. Thus, $e_{cc}(R) > e_{cc}(R)$, when $N > \rho$ and $R > \max(R_{cc}, R_{cc})$. When $N = \rho$, it follows readily from (F.6) that if $\sigma_i = \sigma_0$ for $i = 1, \ldots, \rho$, then $e_{cc}(R) = e_{cc}(R)$ for all R; otherwise, $e_{cc}(R) > e_{cc}(R)$ for all R.

G. PROOF OF THEOREM 2

Using the orthogonality principle, we can write $s = \hat{s} + \tilde{s}$, where \hat{s} is independent of x; thus

$$E[||s - \hat{s}||^2] = E[||\tilde{s} - \hat{s}||^2] + E[||\tilde{s}||^2], $$

(G.1)

which stems directly from the fact that \hat{s} and \tilde{s} are independent of s since they are functions of x. In order to arrive at (12), it suffices to show that $I(x; s_h) = I(\hat{s}; \tilde{s}).$

To this end, consider the SVD of $\Sigma_{\hat{s}} = U_{\hat{s}} S_{\hat{s}} V_{\hat{s}}^T$, where $V_{\hat{s}}$ is an $N \times N$ unitary matrix. Further, recall that $\rho = \text{rank}(\Sigma_{\hat{s}})$, and we define the $N \times N$ matrix $T := (Q_s^T \Sigma_{\hat{s}} \Sigma_{\hat{s}}^{-1}) V_{\hat{s}}^T$ such that $V_{\hat{s}}$ contains the last $N - \rho$ columns of $\Sigma_{\hat{s}}$. Note that $V_{\hat{s}}^T \Sigma_{\hat{s}} V_{\hat{s}} = 0_{N-\rho \times \rho}$. We will prove by contradiction that T is invertible. Suppose that there exists an $N \times 1$ nonzero vector u such that $u^T T = 0^T$; that is, assume that $u := [u_1^T, u_2^T]^T$ satisfies

$$u_1^T Q_s^T \Sigma_{\hat{s}} \Sigma_{\hat{s}}^{-1} + u_2^T V_{\hat{s}}^T \Sigma_{\hat{s}} = 0^T. $$

(G.2)

If $u_1 = 0$ or $u_2 = 0$, then (G.2) yields $u_1^T V_{\hat{s}}^T \Sigma_{\hat{s}} = 0^T$ or $u_2^T Q_s^T \Sigma_{\hat{s}} \Sigma_{\hat{s}}^{-1} = 0^T$, respectively. Note that $u_1^T V_{\hat{s}}^T \Sigma_{\hat{s}} = 0^T$ cannot be true for $u_1 \neq 0$ since $V_{\hat{s}}^T \Sigma_{\hat{s}}$ is a full rank matrix. Similarly, $u_2^T Q_s^T \Sigma_{\hat{s}} \Sigma_{\hat{s}}^{-1} = 0^T$ requires $u_2^T Q_s^T \Sigma_{\hat{s}} = 0^T$ which is impossible for $u_2 \neq 0^T$ because the columns of $Q_s^T \Sigma_{\hat{s}}$ are orthogonal to the nullspace of $\Sigma_{\hat{s}}$. Consider next the case where both u_1 and u_2 are nonzero. Upon defining $u_1 := \Sigma_{\hat{s}}^T Q_s^T \Sigma_{\hat{s}}^{-1} u_1$ and $u_2 := V_{\hat{s}}^T \Sigma_{\hat{s}}^{-1} u_2$, it can be easily seen that u_1^T and u_2^T are orthogonal; while u_1^T cannot be zero for $u_1 \neq 0$, since the columns of $Q_s^T \Sigma_{\hat{s}}$ are orthogonal to the nullspace of $\Sigma_{\hat{s}}$. Thus, from (G.2) we arrive at

$$u_1^T \Sigma_{\hat{s}} \Sigma_{\hat{s}}^{-1} + u_2^T V_{\hat{s}}^T \Sigma_{\hat{s}} = 0,$$

(G.3)

which further implies that $(u_1^T)^2 + (u_2^T)^2 = 0$. Since $\Sigma_{\hat{s}}$ is full rank, the latter leads to a contradiction which establishes that T is invertible.
Upon multiplying T with the observation vector x, we obtain
\[
Tx = \left[(Q_{x}^{T} \Sigma_{xx}^{-1} x)^{T} (V_{s,x}^{T} - p)^{T} \right]^{T}
\]
\[
= \left[(Q_{x}^{T} \hat{s})^{T} (V_{s,x}^{T} - p)^{T} \right]^{T}
\]
where the second inequality in (G.4) holds because $\hat{s} = \Sigma_{xx}^{-1} x$. Further, the cross-correlation matrix of $Q_{x}^{T} \hat{s}$ with $V_{s,x}^{T} - p$ is given by
\[
Q_{x}^{T} \hat{s} E[\hat{s} x^{T}] V_{s,x}^{T} - p = Q_{x}^{T} \Sigma_{xx} V_{s,x}^{T} - p
\]
\[
= 0_{p \times N - p}.
\]
The uncorrelatedness in (G.5) implies that the Gaussian vectors $Q_{x}^{T} \hat{s}$ and $V_{s,x}^{T} - p$ are independent. Using the invertibility of T, we obtain
\[
I(x; \hat{s}_{R}) = I(Tx; \hat{s}_{R})
\]
\[
= I(V_{s,x}^{T} - p; \hat{s}_{R}) + I(Q_{x}^{T} \hat{s}; \hat{s}_{R} | V_{s,x}^{T} - p).
\]
Now, the optimal estimate \hat{s}_{R} can be independent of $V_{s,x}^{T} - p$ without affecting the distortion, since the second is uncorrelated with s and does not contain any information relevant to the estimation of s; thus, we have that $I(\hat{s}_{R}; V_{s,x}^{T} - p) = 0$. Since $Q_{x}^{T} \hat{s}$ and $V_{s,x}^{T} - p$ are independent, we obtain that
\[
I(Q_{x}^{T} \hat{s}; \hat{s}_{R} | V_{s,x}^{T} - p) = I(Q_{x}^{T} \hat{s}; \hat{s}_{R}),
\]
where the second equality in (G.7) holds because $Q_{x}^{T} \hat{s}$ offers no information for estimating s, and \hat{s}_{R} and $Q_{x}^{T} \hat{s}$ are independent of $Q_{x}^{T} \hat{s}$.

H. PROOF OF (15)

After expressing Σ_{xy}^{-1} in terms of $\Sigma_{x,x}$, $\Sigma_{x,u}$, $\Sigma_{u,x}$, we find that
\[
L_{1} = (\Sigma_{x,x} - \Sigma_{x,u} \Sigma_{u,x}^{-1} \Sigma_{x,u}) (\Sigma_{x,x} - \Sigma_{x,u} \Sigma_{u,x}^{-1} \Sigma_{u,x})^{-1}.
\]
where (H.1) follows because: (i) vectors $U_{h_{1},N_{1}-p_{1}} n_{1}$ and $Q_{L_{1},p_{1}} L_{1} x_{1}$ are independent; and (ii) u_{1} can also be independent of $U_{h_{1},N_{1}-p_{1}} n_{1}$ without affecting the resulting distortion. Evaluating (H.4) in terms of the mutual information $I(L_{1} x_{1}; u_{1})$, we find
\[
I(L_{1} x_{1}; u_{1}) = I(Q_{L_{1},p_{1}}^{T} L_{1} x_{1}; u_{1})
\]
\[
= I(Q_{L_{1},p_{1}}^{T} L_{1} x_{1}; u_{1})
\]
\[
+ I(Q_{L_{1},p_{1}}^{T} L_{1} x_{1}; u_{1} | Q_{L_{1},p_{1}}^{T} L_{1} x_{1})
\]
\[
= I(Q_{L_{1},p_{1}}^{T} L_{1} x_{1}; u_{1}) + h(u_{1} | Q_{L_{1},p_{1}}^{T} L_{1} x_{1})
\]
\[
- h(u_{1} | Q_{L_{1},p_{1}}^{T} L_{1} x_{1}) Q_{L_{1},p_{1}}^{T} L_{1} x_{1})
\]
\[
= I(Q_{L_{1},p_{1}}^{T} L_{1} x_{1}; u_{1}).
\]

Conclusion: Based on these definitions, we can re-express the matrices inside the parentheses in (H.1) as
where (H.5) follows since \(Q_{L_1|P_1}^{T} \) does not convey additional information about \(u_1 \), beyond what is provided by \(Q_{L_1}^{T} \). Combining (H.4) and (H.5), we conclude that \(I(x_1;u_1) = I(L_1x_1;u_1) \).

ACKNOWLEDGMENTS

The work in this paper was supported by the USDoD ARO Grant no. W911NF-05-1-0283, and also through collaborative participation in the C&N Consortium sponsored by the US ARL under the CTA Program, Cooperative Agreement DAAD19-01-2-0011. Part of the paper was presented in the 43rd Allerton Conference, Monticello, Il, September 28–30, 2005.

REFERENCES

Preliminary call for papers

The 2011 European Signal Processing Conference (EUSIPCO-2011) is the nineteenth in a series of conferences promoted by the European Association for Signal Processing (EURASIP, www.eurasip.org). This year edition will take place in Barcelona, capital city of Catalonia (Spain), and will be jointly organized by the Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) and the Universitat Politècnica de Catalunya (UPC).

EUSIPCO-2011 will focus on key aspects of signal processing theory and applications as listed below. Acceptance of submissions will be based on quality, relevance and originality. Accepted papers will be published in the EUSIPCO proceedings and presented during the conference. Paper submissions, proposals for tutorials and proposals for special sessions are invited in, but not limited to, the following areas of interest.

Areas of Interest

- Audio and electro-acoustics.
- Design, implementation, and applications of signal processing systems.
- Multimedia signal processing and coding.
- Image and multidimensional signal processing.
- Signal detection and estimation.
- Sensor array and multi-channel signal processing.
- Sensor fusion in networked systems.
- Signal processing for communications.
- Medical imaging and image analysis.
- Non-stationary, non-linear and non-Gaussian signal processing.

Submissions

Procedures to submit a paper and proposals for special sessions and tutorials will be detailed at www.eusipco2011.org. Submitted papers must be camera-ready, no more than 5 pages long, and conforming to the standard specified on the EUSIPCO 2011 web site. First authors who are registered students can participate in the best student paper competition.

Important Deadlines:

- Proposals for special sessions: 15 Dec 2010
- Proposals for tutorials: 18 Feb 2011
- Electronic submission of full papers: 21 Feb 2011
- Notification of acceptance: 23 May 2011
- Submission of camera-ready papers: 6 Jun 2011

Webpage: www.eusipco2011.org