Skip to content

The University of Texas at ArlingtonThe University of Texas at Arlington


College of ScienceAbout UsAdvisingMapsMyMavCanvasMail

CHEMISTRY & BIOCHEMISTRY

Sherri McFarland

Sherri McFarland

Professor

Office: 168 Science & Engineering Innovation & Research Building (SEIR)
Email: sherri.mcfarland@uta.edu
Phone:817 272 6072
Research Website: mcfarlandlabs.uta.edu



Education:
B.S. Hendrix College, 1996
M.S.  Univeristy of California San Diego 1998
Ph.D.  Univeristy of California San Diego 2003
Post Doctorate: 
Dalhousie University 2005

 


Research Interests:

Medicinal Inorganic Chemistry
Photophysics and Photochemistry
Chemical Biology
Photomedicine
Cancer Drug Discovery

 

 

 

 

Biography

Sherri McFarland obtained her PhD in Chemistry at the University of California San Diego (2003) where she focused on the control of excited state dynamics for luminescent chemosensing. Building on this work, she completed a post-doctoral fellowship at Dalhousie University (2005) in ultrafast spectroscopy and inorganic photophysics, using femtosecond laser techniques.

Dr. McFarland continues to expand these core areas of expertise through a multidisciplinary research program aimed at developing new photoactive drugs (in combination with light sources and protocols) as anticancer agents and as antibiotics. Some of the most promising compounds have been licensed to a Toronto company and are undergoing clinical trials to treat non-muscle invasive bladder cancer.

Sherri also co-founded a company that develops natural product-based photoactives, with particular focus on improving oral health. She has raised over $2M in research and development funding and has co-authored more than 80 scientific works.

 


Publications:

  • Roque, J. A.; Barrett, P. C.; Cole, H. D.; Lifshits, L. M.; Bradner, E.; Shi, G.; von Dohlen, D.; Kim, S.; Russo, N.; Deep, G.; Cameron, C. G.; Alberto, M. E.; McFarland, S. A. Os(II) Oligothienyl Complexes as a Hypoxia-Active Photosensitizer Class for Photodynamic Therapy. Inorg. Chem. 2020, 59 (22), 16341–16360. https://doi.org/10.1021/acs.inorgchem.0c02137.

  • Smithen, D. A.; Monro, S.; Pinto, M.; Roque, J.; Diaz-Rodriguez, R. M.; Yin, H.; Cameron, C. G.; Thompson, A.; McFarland, S. A. Bis[Pyrrolyl Ru( II )] Triads: A New Class of Photosensitizers for Metal–Organic Photodynamic Therapy. Chem. Sci. 2020, 11, 12047–12069. https://doi.org/10.1039/D0SC04500D.

  • Roque III, J. A.; Barrett, P. C.; Cole, H. D.; Lifshits, L. M.; Shi, G.; Monro, S.; von Dohlen, D.; Kim, S.; Russo, N.; Deep, G.; Cameron, C. G.; Alberto, M. E.; McFarland, S. A. Breaking the Barrier: An Osmium Photosensitizer with Unprecedented Hypoxic Phototoxicity for Real World Photodynamic Therapy. Chem. Sci. 2020, 11, 9784–9806. https://doi.org/10.1039/D0SC03008B.

  • Lifshits, L. M.; Roque III, J. A.; Konda, P.; Monro, S.; Cole, H. D.; von Dohlen, D.; Kim, S.; Deep, G.; Thummel, R. P.; Cameron, C. G.; Gujar, S.; McFarland, S. A. Near-Infrared Absorbing Ru(II) Complexes Act as Immunoprotective Photodynamic Therapy (PDT) Agents against Aggressive Melanoma. Chem. Sci. 2020, 11 (43), 11740–11762. https://doi.org/10.1039/D0SC03875J.

  • Al Subeh, Z. Y.; Raja, H. A.; Monro, S.; Flores-Bocanegra, L.; El-Elimat, T.; Pearce, C. J.; McFarland, S. A.; Oberlies, N. H. Enhanced Production and Anticancer Properties of Photoactivated Perylenequinones. J. Nat. Prod. 2020, 83 (8), 2490–2500. https://doi.org/10.1021/acs.jnatprod.0c00492.

  • Mcfarland, S.; Lifshits, L. M.; Roque, J. A.; Cole, H. D.; Thummel, R. P.; Cameron, C. G. NIR‐absorbing Ru(II) Complexes Containing Α‐Oligothiophenes for Applications in Photodynamic Therapy. ChemBioChem 2020, cbic.202000419. https://doi.org/10.1002/cbic.202000419.

  • Schneider, K. R. A.; Chettri, A.; Cole, H.; Reglinski, K.; Brückmann, J.; Rogue, J.; Stumper, A.; Nauroozi, D.; Schmid, S.; Bäuerle, P.; Eggeling, C.; Cameron, C. G.; Dietzek, B.; McFarland, S. A. Intracellular Photophysics of an Osmium Complex Bearing an Oligothiophene Extended Ligand. Chem. – Eur. J. 2020, chem.202002667. https://doi.org/10.1002/chem.202002667.

  • Chamberlain, S.; Cole, H. D.; Roque, J.; Bellnier, D.; McFarland, S. A.; Shafirstein, G. TLD1433-Mediated Photodynamic Therapy with an Optical Surface Applicator in the Treatment of Lung Cancer Cells In Vitro. Pharmaceuticals 2020, 13 (7), 137. https://doi.org/10.3390/ph13070137.

  • Chen, Q.; Ramu, V.; Aydar, Y.; Groenewoud, A.; Zhou, X.-Q.; Jager, M. J.; Cole, H.; Cameron, C. G.; McFarland, S. A.; Bonnet, S.; Snaar-Jagalska, B. E. TLD1433 Photosensitizer Inhibits Conjunctival Melanoma Cells in Zebrafish Ectopic and Orthotopic Tumour Models. Cancers 2020, 12 (3), 587. https://doi.org/10.3390/cancers12030587.

  • McFarland, S. A.; Mandel, A.; Dumoulin-White, R.; Gasser, G. Metal-Based Photosensitizers for Photodynamic Therapy: The Future of Multimodal Oncology? Curr. Opin. Chem. Biol. 2020, 56, 23–27. https://doi.org/10.1016/j.cbpa.2019.10.004.

  • Roque, J.; Havrylyuk, D.; Barrett, P. C.; Sainuddin, T.; McCain, J.; Colón, K.; Sparks, W. T.; Bradner, E.; Monro, S.; Heidary, D.; Cameron, C. G.; Glazer, E. C.; McFarland, S. A. Strained, Photoejecting Ru(II) Complexes That Are Cytotoxic Under Hypoxic Conditions. Photochem. Photobiol. 2020, 96 (2), 327–339. https://doi.org/10.1111/php.13174.

  • Ghosh, G.; Yin, H.; Monro, S. M. A.; Sainuddin, T.; Lapoot, L.; Greer, A.; McFarland, S. A. Synthesis and Characterization of Ru(II) Complexes with Π‐Expansive Imidazophen Ligands for the Photokilling of Human Melanoma Cells. Photochem. Photobiol. 2020, 96 (2), 349–357. https://doi.org/10.1111/php.13177.
  • McCain, J.; Colón, K. L.; Barrett, P. C.; Monro, S. M. A.; Sainuddin, T.; Roque III, J.; Pinto, M.; Yin, H.; Cameron, C. G.; McFarland, S. A. Photophysical Properties and Photobiological Activities of Ruthenium(II) Complexes Bearing π-Expansive Cyclometalating Ligands with Thienyl Groups. Inorg. Chem. 2019, 58 (16), 10778–10790. https://doi.org/10.1021/acs.inorgchem.9b01044.

  • Liu, B.; Monro, S.; Li, Z.; Jabed, M. A.; Ramirez, D.; Cameron, C. G.; Colón, K.; Roque, J.; Kilina, S.; Tian, J.; McFarland, S. A.; Sun, W. New Class of Homoleptic and Heteroleptic Bis(Terpyridine) Iridium(III) Complexes with Strong Photodynamic Therapy Effects. ACS Appl. Bio Mater. 2019, 2 (7), 2964–2977. https://doi.org/10.1021/acsabm.9b00312.

  • Liu, B.; Lystrom, L.; Cameron, C. G.; Kilina, S.; McFarland, S. A.; Sun, W. Monocationic Iridium(III) Complexes with Far-Red Charge-Transfer Absorption and Near-IR Emission: Synthesis, Photophysics, and Reverse Saturable Absorption: Monocationic Iridium(III) Complexes with Far-Red Charge-Transfer Absorption and Near-IR Emission: Synthesis, Photophysics, and Reverse Saturable Absor. Eur. J. Inorg. Chem. 2019, 2019 (16), 2208–2215. https://doi.org/10.1002/ejic.201900156.

  • Reichardt, C.; Monro, S.; Sobotta, F. H.; Colón, K. L.; Sainuddin, T.; Stephenson, M.; Sampson, E.; Roque, J.; Yin, H.; Brendel, J. C.; Cameron, C. G.; McFarland, S.; Dietzek, B. Predictive Strength of Photophysical Measurements for in Vitro Photobiological Activity in a Series of Ru(II) Polypyridyl Complexes Derived from π-Extended Ligands. Inorg. Chem. 2019, 58 (5), 3156–3166. https://doi.org/10.1021/acs.inorgchem.8b03223.

  • Wang, L.; Monro, S.; Cui, P.; Yin, H.; Liu, B.; Cameron, C. G.; Xu, W.; Hetu, M.; Fuller, A.; Kilina, S.; McFarland, S. A.; Sun, W. Heteroleptic Ir(III)N 6 Complexes with Long-Lived Triplet Excited States and in Vitro Photobiological Activities. ACS Appl. Mater. Interfaces 2019, 11 (4), 3629–3644. https://doi.org/10.1021/acsami.8b14744.

  • Monro, S.; Colón, K. L.; Yin, H.; Roque, J.; Konda, P.; Gujar, S.; Thummel, R. P.; Lilge, L.; Cameron, C. G.; McFarland, S. A. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chem. Rev. 2019, 119 (2), 797–828. https://doi.org/10.1021/acs.chemrev.8b00211.

  • Monro, S.; Cameron, C. G.; Zhu, X.; Colón, K. L.; Yin, H.; Sainuddin, T.; Hetu, M.; Pinto, M.; Fuller, A.; Bennett, L.; Roque, J.; Sun, W.; McFarland, S. A. Synthesis, Characterization and Photobiological Studies of Ru(II) Dyads Derived from α -Oligothiophene Derivatives of 1,10-Phenanthroline. Photochem. Photobiol. 2019, 95 (1), 267–279. https://doi.org/10.1111/php.13012.

  • Ghosh, G.; Belh, S. J.; Chiemezie, C.; Walalawela, N.; Ghogare, A. A.; Vignoni, M.; Thomas, A. H.; McFarland, S. A.; Greer, E. M.; Greer, A. S,S-Chiral Linker Induced U Shape with a Syn-Facial Sensitizer and Photocleavable Ethene Group. Photochem. Photobiol. 2019, 95 (1), 293–305. https://doi.org/10.1111/php.13000.

  • Liu, B.; Monro, S.; Jabed, M. A.; Cameron, C. G.; Colón, K. L.; Xu, W.; Kilina, S.; McFarland, S. A.; Sun, W. Neutral Iridium( III ) Complexes Bearing BODIPY-Substituted N-Heterocyclic Carbene (NHC) Ligands: Synthesis, Photophysics, in Vitro Theranostic Photodynamic Therapy, and Antimicrobial Activity. Photochem. Photobiol. Sci. 2019, 18 (10), 2381–2396. https://doi.org/10.1039/C9PP00142E.

  • Monjo, A.; Pringle, E.; Thornbury, M.; Duguay, B.; Monro, S.; Hetu, M.; Knight, D.; Cameron, C.; McFarland, S.; McCormick, C. Photodynamic Inactivation of Herpes Simplex Viruses. Viruses 2018, 10 (10), 532. https://doi.org/10.3390/v10100532.

  • Liu, B.; Monro, S.; Lystrom, L.; Cameron, C. G.; Colón, K.; Yin, H.; Kilina, S.; McFarland, S. A.; Sun, W. Photophysical and Photobiological Properties of Dinuclear Iridium(III) Bis-Tridentate Complexes. Inorg. Chem. 2018, 57 (16), 9859–9872. https://doi.org/10.1021/acs.inorgchem.8b00789.

  • Ghosh, G.; Colón, K. L.; Fuller, A.; Sainuddin, T.; Bradner, E.; McCain, J.; Monro, S. M. A.; Yin, H.; Hetu, M. W.; Cameron, C. G.; McFarland, S. A. Cyclometalated Ruthenium(II) Complexes Derived from α-Oligothiophenes as Highly Selective Cytotoxic or Photocytotoxic Agents. Inorg. Chem. 2018, 57 (13), 7694–7712. https://doi.org/10.1021/acs.inorgchem.8b00689.

  • Cruickshank, B.; Giacomantonio, M.; Marcato, P.; McFarland, S.; Pol, J.; Gujar, S. Dying to Be Noticed: Epigenetic Regulation of Immunogenic Cell Death for Cancer Immunotherapy. Front. Immunol. 2018, 9, 654. https://doi.org/10.3389/fimmu.2018.00654.

  • Lazic, S.; Kaspler, P.; Shi, G.; Monro, S.; Sainuddin, T.; Forward, S.; Kasimova, K.; Hennigar, R.; Mandel, A.; McFarland, S.; Lilge, L. Novel Osmium-Based Coordination Complexes as Photosensitizers for Panchromatic Photodynamic Therapy. Photochem. Photobiol. 2017, 93 (5), 1248–1258. https://doi.org/10.1111/php.12767.

  • Reichardt, C.; Schneider, K. R. A.; Sainuddin, T.; Wächtler, M.; McFarland, S. A.; Dietzek, B. Excited State Dynamics of a Photobiologically Active Ru(II) Dyad Are Altered in Biologically Relevant Environments. J. Phys. Chem. A 2017, 121 (30), 5635–5644. https://doi.org/10.1021/acs.jpca.7b04670.

  • Smithen, D. A.; Yin, H.; Beh, M. H. R.; Hetu, M.; Cameron, T. S.; McFarland, S. A.; Thompson, A. Synthesis and Photobiological Activity of Ru(II) Dyads Derived from Pyrrole-2-Carboxylate Thionoesters. Inorg. Chem. 2017, 56 (7), 4121–4132. https://doi.org/10.1021/acs.inorgchem.7b00072.

  • Wang, L.; Yin, H.; Jabed, M. A.; Hetu, M.; Wang, C.; Monro, S.; Zhu, X.; Kilina, S.; McFarland, S. A.; Sun, W. π-Expansive Heteroleptic Ruthenium(II) Complexes as Reverse Saturable Absorbers and Photosensitizers for Photodynamic Therapy. Inorg. Chem. 2017, 56 (6), 3245–3259. https://doi.org/10.1021/acs.inorgchem.6b02624.

  • Wang, L.; Yin, H.; Cui, P.; Hetu, M.; Wang, C.; Monro, S.; Schaller, R. D.; Cameron, C. G.; Liu, B.; Kilina, S.; McFarland, S. A.; Sun, W. Near-Infrared-Emitting Heteroleptic Cationic Iridium Complexes Derived from 2,3-Diphenylbenzo[g]Quinoxaline as in Vitro Theranostic Photodynamic Therapy Agents. Dalton Trans. 2017, 46 (25), 8091–8103. https://doi.org/10.1039/C7DT00913E.

  • Reichardt, C.; Sainuddin, T.; Wächtler, M.; Monro, S.; Kupfer, S.; Guthmuller, J.; Gräfe, S.; McFarland, S.; Dietzek, B. Influence of Protonation State on the Excited State Dynamics of a Photobiologically Active Ru(II) Dyad. J. Phys. Chem. A 2016, 120 (32), 6379–6388. https://doi.org/10.1021/acs.jpca.6b05957.

  • Sainuddin, T.; Pinto, M.; Yin, H.; Hetu, M.; Colpitts, J.; McFarland, S. A. Strained Ruthenium Metal–Organic Dyads as Photocisplatin Agents with Dual Action. J. Inorg. Biochem. 2016, 158, 45–54. https://doi.org/10.1016/j.jinorgbio.2016.01.009.

  • Culf, A. S.; Yin, H.; Monro, S.; Ghosh, A.; Barnett, D. A.; Ouellette, R. J.; Čuperlović-Culf, M.; McFarland, S. A. A Spectroscopic Study of Substituted Anthranilic Acids as Sensitive Environmental Probes for Detecting Cancer Cells. Bioorg. Med. Chem. 2016, 24 (5), 929–937. https://doi.org/10.1016/j.bmc.2015.12.044.

  • Sainuddin, T.; McCain, J.; Pinto, M.; Yin, H.; Gibson, J.; Hetu, M.; McFarland, S. A. Organometallic Ru(II) Photosensitizers Derived from π-Expansive Cyclometalating Ligands: Surprising Theranostic PDT Effects. Inorg. Chem. 2016, 55 (1), 83–95. https://doi.org/10.1021/acs.inorgchem.5b01838.

  • Wang, C.; Lystrom, L.; Yin, H.; Hetu, M.; Kilina, S.; McFarland, S. A.; Sun, W. Increasing the Triplet Lifetime and Extending the Ground-State Absorption of Biscyclometalated Ir( III ) Complexes for Reverse Saturable Absorption and Photodynamic Therapy Applications. Dalton Trans. 2016, 45 (41), 16366–16378. https://doi.org/10.1039/C6DT02416E.

  • Martinez-Farina, C. F.; Robertson, A. W.; Yin, H.; Monro, S.; McFarland, S. A.; Syvitski, R. T.; Jakeman, D. L. Isolation and Synthetic Diversification of Jadomycin 4-Amino- L -Phenylalanine. J. Nat. Prod. 2015, 78 (6), 1208–1214. https://doi.org/10.1021/np5009398.

  • Reichardt, C.; Pinto, M.; Wächtler, M.; Stephenson, M.; Kupfer, S.; Sainuddin, T.; Guthmuller, J.; McFarland, S. A.; Dietzek, B. Photophysics of Ru(II) Dyads Derived from Pyrenyl-Substitued Imidazo[4,5- f ][1,10]Phenanthroline Ligands. J. Phys. Chem. A 2015, 119 (17), 3986–3994. https://doi.org/10.1021/acs.jpca.5b01737.

  • Robertson, A. W.; Martinez-Farina, C. F.; Smithen, D. A.; Yin, H.; Monro, S.; Thompson, A.; McFarland, S. A.; Syvitski, R. T.; Jakeman, D. L. Eight-Membered Ring-Containing Jadomycins: Implications for Non-Enzymatic Natural Products Biosynthesis. J. Am. Chem. Soc. 2015, 137 (9), 3271–3275. https://doi.org/10.1021/ja5114672.

  • Shi, G.; Monro, S.; Hennigar, R.; Colpitts, J.; Fong, J.; Kasimova, K.; Yin, H.; DeCoste, R.; Spencer, C.; Chamberlain, L.; Mandel, A.; Lilge, L.; McFarland, S. A. Ru(II) Dyads Derived from α-Oligothiophenes: A New Class of Potent and Versatile Photosensitizers for PDT. Coord. Chem. Rev. 2015, 282–283, 127–138. https://doi.org/10.1016/j.ccr.2014.04.012.

  • Stephenson, M.; Reichardt, C.; Pinto, M.; Wächtler, M.; Sainuddin, T.; Shi, G.; Yin, H.; Monro, S.; Sampson, E.; Dietzek, B.; McFarland, S. A. Ru(II) Dyads Derived from 2-(1-Pyrenyl)-1 H -Imidazo[4,5- f ][1,10]Phenanthroline: Versatile Photosensitizers for Photodynamic Applications. J. Phys. Chem. A 2014, 118 (45), 10507–10521. https://doi.org/10.1021/jp504330s.

  • Yin, H.; Stephenson, M.; Gibson, J.; Sampson, E.; Shi, G.; Sainuddin, T.; Monro, S.; McFarland, S. A. In Vitro Multiwavelength PDT with 3 IL States: Teaching Old Molecules New Tricks. Inorg. Chem. 2014, 53 (9), 4548–4559. https://doi.org/10.1021/ic5002368.

  • Marchal, E.; Smithen, D. A.; Uddin, Md. I.; Robertson, A. W.; Jakeman, D. L.; Mollard, V.; Goodman, C. D.; MacDougall, K. S.; McFarland, S. A.; McFadden, G. I.; Thompson, A. Synthesis and Antimalarial Activity of Prodigiosenes. Org. Biomol. Chem. 2014, 12 (24), 4132. https://doi.org/10.1039/c3ob42548g.

  • Arenas, Y.; Monro, S.; Shi, G.; Mandel, A.; McFarland, S.; Lilge, L. Photodynamic Inactivation of Staphylococcus Aureus and Methicillin-Resistant Staphylococcus Aureus with Ru(II)-Based Type I/Type II Photosensitizers. Photodiagnosis Photodyn. Ther. 2013, 10 (4), 615–625. https://doi.org/10.1016/j.pdpdt.2013.07.001.

  • Lincoln, R.; Kohler, L.; Monro, S.; Yin, H.; Stephenson, M.; Zong, R.; Chouai, A.; Dorsey, C.; Hennigar, R.; Thummel, R. P.; McFarland, S. A. Exploitation of Long-Lived 3 IL Excited States for Metal–Organic Photodynamic Therapy: Verification in a Metastatic Melanoma Model. J. Am. Chem. Soc. 2013, 135 (45), 17161–17175. https://doi.org/10.1021/ja408426z.

  • Smithen, D. A.; Forrester, A. M.; Corkery, D. P.; Dellaire, G.; Colpitts, J.; McFarland, S. A.; Berman, J. N.; Thompson, A. Investigations Regarding the Utility of Prodigiosenes to Treat Leukemia. Org Biomol Chem 2013, 11 (1), 62–68. https://doi.org/10.1039/C2OB26535D.

  • Rastogi, S.; Marchal, E.; Uddin, I.; Groves, B.; Colpitts, J.; McFarland, S. A.; Davis, J. T.; Thompson, A. Synthetic Prodigiosenes and the Influence of C-Ring Substitution on DNA Cleavage, Transmembrane Chloride Transport and Basicity. Org. Biomol. Chem. 2013, 11 (23), 3834. https://doi.org/10.1039/c3ob40477c.

  • Dupuis, S. N.; Robertson, A. W.; Veinot, T.; Monro, S. M. A.; Douglas, S. E.; Syvitski, R. T.; Goralski, K. B.; McFarland, S. A.; Jakeman, D. L. Synthetic Diversification of Natural Products: Semi-Synthesis and Evaluation of Triazole Jadomycins. Chem. Sci. 2012, 3 (5), 1640. https://doi.org/10.1039/c2sc00663d.

  • Dupuis, S. N.; Veinot, T.; Monro, S. M. A.; Douglas, S. E.; Syvitski, R. T.; Goralski, K. B.; McFarland, S. A.; Jakeman, D. L. Jadomycins Derived from the Assimilation and Incorporation of Norvaline and Norleucine. J. Nat. Prod. 2011, 74 (11), 2420–2424. https://doi.org/10.1021/np200689w.

  • Monro, S. M. A.; Cottreau, K. M.; Spencer, C.; Wentzell, J. R.; Graham, C. L.; Borissow, C. N.; Jakeman, D. L.; McFarland, S. A. Copper-Mediated Nuclease Activity of Jadomycin B. Bioorg. Med. Chem. 2011, 19 (11), 3357–3360. https://doi.org/10.1016/j.bmc.2011.04.043.

  • Yadav, P. N.; Beveridge, R. E.; Blay, J.; Boyd, A. R.; Chojnacka, M. W.; Decken, A.; Deshpande, A. A.; Gardiner, M. G.; Hambley, T. W.; Hughes, M. J.; Jolly, L.; Lavangie, J. A.; MacInnis, T. D.; McFarland, S. A.; New, E. J.; Gossage, R. A. Platinum-Oxazoline Complexes as Anti-Cancer Agents: Syntheses, Characterisation and Initial Biological Studies. MedChemComm 2011, 2 (4), 274. https://doi.org/10.1039/c0md00211a.

  • Cottreau, K. M.; Spencer, C.; Wentzell, J. R.; Graham, C. L.; Borissow, C. N.; Jakeman, D. L.; McFarland, S. A. Diverse DNA-Cleaving Capacities of the Jadomycins through Precursor-Directed Biosynthesis. Org. Lett. 2010, 12 (6), 1172–1175. https://doi.org/10.1021/ol902907r.

  • Monro, S.; Scott, J.; Chouai, A.; Lincoln, R.; Zong, R.; Thummel, R. P.; McFarland, S. A. Photobiological Activity of Ru(II) Dyads Based on (Pyren-1-Yl)Ethynyl Derivatives of 1,10-Phenanthroline. Inorg. Chem. 2010, 49 (6), 2889–2900. https://doi.org/10.1021/ic902427r.

  • McFarland, S. A.; Cheng, K. A.; Lee, F. S.; Cozens, F. L.; Schepp, N. P. Nonthermalized Excited States in Ru(II) Polypyridyl Complexes Probed by Ultrafast Transient Absorption Spectroscopy with High Photon Energy Excitation. Can. J. Chem. 2008, 86 (12), 1118–1125. https://doi.org/10.1139/v08-161.

  • McFarland, S. A.; Magde, D.; Finney, N. S. Conformational Control of Excited-State Dynamics in Highly Distorted Ru(II) Polypyridyl Complexes. Inorg. Chem. 2005, 44 (11), 4066–4076. https://doi.org/10.1021/ic0502729.

  • McFarland, S. A.; Lee, F. S.; Cheng, K. A. W. Y.; Cozens, F. L.; Schepp, N. P. Picosecond Dynamics of Nonthermalized Excited States in Tris(2,2-Bipyridine)Ruthenium(II) Derivatives Elucidated by High Energy Excitation. J. Am. Chem. Soc. 2005, 127 (19), 7065–7070. https://doi.org/10.1021/ja0461872.

  • McFarland, S. A.; Finney, N. S. Modulating the Efficiency of Ru(Ii) Luminescence via Ion Binding-Induced Conformational Restriction of Bipyridyl Ligands. Chem. Commun. 2003, No. 3, 388–389. https://doi.org/10.1039/b210254d.

  • McFarland, S. A.; Finney, N. S. Fluorescent Signaling Based on Control of Excited State Dynamics. Biarylacetylene Fluorescent Chemosensors. J. Am. Chem. Soc. 2002, 124 (7), 1178–1179. https://doi.org/10.1021/ja017309i.

  • McFarland, S. A.; Finney, N. S. Fluorescent Chemosensors Based on Conformational Restriction of a Biaryl Fluorophore. J. Am. Chem. Soc. 2001, 123 (6), 1260–1261. https://doi.org/10.1021/ja005701a.